Suppr超能文献

系统地整合临床试验招募地点的数据,以便基于地理位置进行查询和可视化。

Systematic data ingratiation of clinical trial recruitment locations for geographic-based query and visualization.

机构信息

Department of Health Informatics and Administration, University of Wisconsin Milwaukee, Milwaukee, WI,United States; Biomedical Data and Language Processing Center, University of Wisconsin Milwaukee, Milwaukee, WI, United States.

Department of Biomedical Informatics, Columbia University, New York City, NY, United States.

出版信息

Int J Med Inform. 2017 Dec;108:85-91. doi: 10.1016/j.ijmedinf.2017.10.003. Epub 2017 Oct 4.

Abstract

BACKGROUND

Prior studies of clinical trial planning indicate that it is crucial to search and screen recruitment sites before starting to enroll participants. However, currently there is no systematic method developed to support clinical investigators to search candidate recruitment sites according to their interested clinical trial factors.

OBJECTIVE

In this study, we aim at developing a new approach to integrating the location data of over one million heterogeneous recruitment sites that are stored in clinical trial documents. The integrated recruitment location data can be searched and visualized using a map-based information retrieval method. The method enables systematic search and analysis of recruitment sites across a large amount of clinical trials.

METHODS

The location data of more than 1.4 million recruitment sites of over 183,000 clinical trials was normalized and integrated using a geocoding method. The integrated data can be used to support geographic information retrieval of recruitment sites. Additionally, the information of over 6000 clinical trial target disease conditions and close to 4000 interventions was also integrated into the system and linked to the recruitment locations. Such data integration enabled the construction of a novel map-based query system. The system will allow clinical investigators to search and visualize candidate recruitment sites for clinical trials based on target conditions and interventions.

RESULTS

The evaluation results showed that the coverage of the geographic location mapping for the 1.4 million recruitment sites was 99.8%. The evaluation of 200 randomly retrieved recruitment sites showed that the correctness of geographic information mapping was 96.5%. The recruitment intensities of the top 30 countries were also retrieved and analyzed. The data analysis results indicated that the recruitment intensity varied significantly across different countries and geographic areas.

CONCLUSION

This study contributed a new data processing framework to extract and integrate the location data of heterogeneous recruitment sites from clinical trial documents. The developed system can support effective retrieval and analysis of potential recruitment sites using target clinical trial factors.

摘要

背景

先前关于临床试验规划的研究表明,在开始招募参与者之前,搜索和筛选招募地点至关重要。然而,目前尚无系统的方法来支持临床研究人员根据其感兴趣的临床试验因素搜索候选招募地点。

目的

本研究旨在开发一种新方法,整合存储在临床试验文档中的超过 100 万个异质招募地点的位置数据。通过基于地图的信息检索方法,可以搜索和可视化整合的招募位置数据。该方法可以系统地搜索和分析大量临床试验中的招募地点。

方法

使用地理编码方法对超过 183000 项临床试验的 140 多万个招募地点的位置数据进行了规范化和整合。整合后的数据可用于支持招募地点的地理信息检索。此外,还将 6000 多种临床试验目标疾病状况和近 4000 种干预措施的信息整合到系统中,并与招募地点相关联。这种数据集成实现了基于目标条件和干预措施的新型基于地图的查询系统的构建。该系统将允许临床研究人员根据目标条件和干预措施搜索和可视化临床试验的候选招募地点。

结果

评估结果表明,140 万个招募地点的地理位置映射覆盖率为 99.8%。对随机检索的 200 个招募地点的评估表明,地理信息映射的正确性为 96.5%。还检索和分析了前 30 个国家的招募强度。数据分析结果表明,不同国家和地理区域的招募强度差异显著。

结论

本研究提出了一种新的数据处理框架,用于从临床试验文档中提取和整合异质招募地点的位置数据。开发的系统可以支持使用目标临床试验因素有效检索和分析潜在的招募地点。

相似文献

1
Systematic data ingratiation of clinical trial recruitment locations for geographic-based query and visualization.
Int J Med Inform. 2017 Dec;108:85-91. doi: 10.1016/j.ijmedinf.2017.10.003. Epub 2017 Oct 4.
4
Employing computers for the recruitment into clinical trials: a comprehensive systematic review.
J Med Internet Res. 2014 Jul 1;16(7):e161. doi: 10.2196/jmir.3446.
5
An evaluation framework for comparing geocoding systems.
Int J Health Geogr. 2013 Nov 8;12:50. doi: 10.1186/1476-072X-12-50.
6
StudyPortal - Geovisualization of Study Research Networks.
J Med Syst. 2019 Dec 10;44(1):22. doi: 10.1007/s10916-019-1493-0.
7
An initiative using informatics to facilitate clinical research planning and recruitment in the VA health care system.
Contemp Clin Trials Commun. 2018 Jul 10;11:107-112. doi: 10.1016/j.conctc.2018.07.001. eCollection 2018 Sep.
9
The future of Cochrane Neonatal.
Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12.

引用本文的文献

1
Enhancing site selection strategies in clinical trial recruitment using real-world data modeling.
PLoS One. 2024 Mar 11;19(3):e0300109. doi: 10.1371/journal.pone.0300109. eCollection 2024.

本文引用的文献

1
Geographic distribution and epidemiology of lung cancer during 2011 in Zhejiang province of China.
Asian Pac J Cancer Prev. 2014;15(13):5299-303. doi: 10.7314/apjcp.2014.15.13.5299.
2
Mining patterns of adverse events using aggregated clinical trial results.
AMIA Jt Summits Transl Sci Proc. 2013 Mar 18;2013:112-6. eCollection 2013.
3
A human-computer collaborative approach to identifying common data elements in clinical trial eligibility criteria.
J Biomed Inform. 2013 Feb;46(1):33-9. doi: 10.1016/j.jbi.2012.07.006. Epub 2012 Jul 27.
4
Characteristics of clinical trials registered in ClinicalTrials.gov, 2007-2010.
JAMA. 2012 May 2;307(17):1838-47. doi: 10.1001/jama.2012.3424.
5
Site selection in community-based clinical trials for substance use disorders: strategies for effective site selection.
Am J Drug Alcohol Abuse. 2011 Sep;37(5):400-7. doi: 10.3109/00952990.2011.596975.
6
Worldwide burden of cervical cancer in 2008.
Ann Oncol. 2011 Dec;22(12):2675-2686. doi: 10.1093/annonc/mdr015. Epub 2011 Apr 6.
8
The cost of new drug discovery and development.
Discov Med. 2004 Jun;4(22):172-9.
9
Geographic dependence, surveillance, and origins of the 2009 influenza A (H1N1) virus.
N Engl J Med. 2009 Jul 9;361(2):115-9. doi: 10.1056/NEJMp0904572. Epub 2009 May 27.
10
Spending on new drug development1.
Health Econ. 2010 Feb;19(2):130-41. doi: 10.1002/hec.1454.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验