Suppr超能文献

G 蛋白偶联的 S1P 受体与多泡体网格蛋白包被小泡中 Gβγ 亚基共同参与 F-actin 的形成和货物分选到外泌体中。

Involvement of Gβγ subunits of G protein coupled with S1P receptor on multivesicular endosomes in F-actin formation and cargo sorting into exosomes.

机构信息

Department of Biochemistry and Molecular Biology, Division of Biochemistry, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki, Kobe 650-0017, Japan.

Department of Biochemistry and Molecular Biology, Division of Biochemistry, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki, Kobe 650-0017, Japan.

出版信息

J Biol Chem. 2018 Jan 5;293(1):245-253. doi: 10.1074/jbc.M117.808733. Epub 2017 Nov 13.

Abstract

Exosomes play a critical role in cell-to-cell communication by delivering cargo molecules to recipient cells. However, the mechanism underlying the generation of the exosomal multivesicular endosome (MVE) is one of the mysteries in the field of endosome research. Although sphingolipid metabolites such as ceramide and sphingosine 1-phosphate (S1P) are known to play important roles in MVE formation and maturation, the detailed molecular mechanisms are still unclear. Here, we show that Rho family GTPases, including Cdc42 and Rac1, are constitutively activated on exosomal MVEs and are regulated by S1P signaling as measured by fluorescence resonance energy transfer (FRET)-based conformational changes. Moreover, we detected S1P signaling-induced filamentous actin (F-actin) formation. A selective inhibitor of Gβγ subunits, M119, strongly inhibited both F-actin formation on MVEs and cargo sorting into exosomal intralumenal vesicles of MVEs, both of which were fully rescued by the simultaneous expression of constitutively active Cdc42 and Rac1. Our results shed light on the mechanism underlying exosomal MVE maturation and inform the understanding of the physiological relevance of continuous activation of the S1P receptor and subsequent downstream G protein signaling to Gβγ subunits/Rho family GTPases-regulated F-actin formation on MVEs for cargo sorting into exosomal intralumenal vesicles.

摘要

外泌体通过将货物分子递送到受体细胞在细胞间通讯中发挥关键作用。然而,外泌体多泡体(MVE)生成的机制是内体研究领域的谜团之一。尽管已知鞘脂代谢物,如神经酰胺和鞘氨醇 1-磷酸(S1P),在 MVE 的形成和成熟中发挥重要作用,但详细的分子机制仍不清楚。在这里,我们表明 Rho 家族 GTPases,包括 Cdc42 和 Rac1,在 MVE 上持续激活,并通过荧光共振能量转移(FRET)构象变化来调节 S1P 信号。此外,我们检测到 S1P 信号诱导的丝状肌动蛋白(F-actin)形成。Gβγ亚基的选择性抑制剂 M119 强烈抑制 MVE 上的 F-actin 形成和货物分拣到 MVE 的外泌体腔室内小泡中,这两种作用都被同时表达组成性激活的 Cdc42 和 Rac1 完全挽救。我们的结果阐明了外泌体 MVE 成熟的机制,并揭示了持续激活 S1P 受体及其随后的下游 G 蛋白信号传导对 Gβγ亚基/Rho 家族 GTPases 调节的 F-actin 形成的生理相关性的理解,这种作用对于货物分拣到 MVE 的外泌体腔室内小泡中非常重要。

相似文献

4
The balance between Gα-Cdc42/Rac and Gα/-RhoA pathways determines endothelial barrier regulation by sphingosine-1-phosphate.
Mol Biol Cell. 2017 Nov 7;28(23):3371-3382. doi: 10.1091/mbc.E17-03-0136. Epub 2017 Sep 27.
6
Rac1-stimulated macropinocytosis enhances Gβγ activation of PI3Kβ.
Biochem J. 2017 Nov 16;474(23):3903-3914. doi: 10.1042/BCJ20170279.
9
Gβγ signaling to the chemotactic effector P-REX1 and mammalian cell migration is directly regulated by Gα and Gα proteins.
J Biol Chem. 2019 Jan 11;294(2):531-546. doi: 10.1074/jbc.RA118.006254. Epub 2018 Nov 16.

引用本文的文献

1
Flotillins in membrane trafficking and physiopathology.
Biol Cell. 2025 Jan;117(1):e2400134. doi: 10.1111/boc.202400134.
4
Exosome nanovesicles: biomarkers and new strategies for treatment of human diseases.
MedComm (2020). 2024 Jul 15;5(8):e660. doi: 10.1002/mco2.660. eCollection 2024 Aug.
5
The role of exosomal molecular cargo in exosome biogenesis and disease diagnosis.
Front Immunol. 2024 Jun 25;15:1417758. doi: 10.3389/fimmu.2024.1417758. eCollection 2024.
6
Regulation of cellular and systemic sphingolipid homeostasis.
Nat Rev Mol Cell Biol. 2024 Oct;25(10):802-821. doi: 10.1038/s41580-024-00742-y. Epub 2024 Jun 18.
9
The Regulation of Exosome Generation and Function in Physiological and Pathological Processes.
Int J Mol Sci. 2023 Dec 23;25(1):255. doi: 10.3390/ijms25010255.

本文引用的文献

1
Fluorogenic probes for live-cell imaging of the cytoskeleton.
Nat Methods. 2014 Jul;11(7):731-3. doi: 10.1038/nmeth.2972. Epub 2014 May 25.
3
Designing functional siRNA with reduced off-target effects.
Methods Mol Biol. 2013;942:57-68. doi: 10.1007/978-1-62703-119-6_3.
4
Multivesicular body morphogenesis.
Annu Rev Cell Dev Biol. 2012;28:337-62. doi: 10.1146/annurev-cellbio-092910-154152. Epub 2012 Jul 20.
6
Sphingosine-1-phosphate receptor S1P1 is regulated by direct interactions with P-Rex1, a Rac guanine nucleotide exchange factor.
Biochem Biophys Res Commun. 2010 Jan 22;391(4):1647-52. doi: 10.1016/j.bbrc.2009.12.108. Epub 2009 Dec 28.
7
Membrane vesicles as conveyors of immune responses.
Nat Rev Immunol. 2009 Aug;9(8):581-93. doi: 10.1038/nri2567. Epub 2009 Jun 5.
8
Multivesicular endosome biogenesis in the absence of ESCRTs.
Traffic. 2009 Jul;10(7):925-37. doi: 10.1111/j.1600-0854.2009.00920.x. Epub 2009 Apr 10.
9
Sphingosine 1-phosphate receptor signaling.
Annu Rev Biochem. 2009;78:743-68. doi: 10.1146/annurev.biochem.78.072407.103733.
10
Ceramide triggers budding of exosome vesicles into multivesicular endosomes.
Science. 2008 Feb 29;319(5867):1244-7. doi: 10.1126/science.1153124.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验