Department of Biochemistry and Molecular Biology, Division of Biochemistry, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki, Kobe 650-0017, Japan.
Department of Biochemistry and Molecular Biology, Division of Biochemistry, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki, Kobe 650-0017, Japan.
J Biol Chem. 2018 Jan 5;293(1):245-253. doi: 10.1074/jbc.M117.808733. Epub 2017 Nov 13.
Exosomes play a critical role in cell-to-cell communication by delivering cargo molecules to recipient cells. However, the mechanism underlying the generation of the exosomal multivesicular endosome (MVE) is one of the mysteries in the field of endosome research. Although sphingolipid metabolites such as ceramide and sphingosine 1-phosphate (S1P) are known to play important roles in MVE formation and maturation, the detailed molecular mechanisms are still unclear. Here, we show that Rho family GTPases, including Cdc42 and Rac1, are constitutively activated on exosomal MVEs and are regulated by S1P signaling as measured by fluorescence resonance energy transfer (FRET)-based conformational changes. Moreover, we detected S1P signaling-induced filamentous actin (F-actin) formation. A selective inhibitor of Gβγ subunits, M119, strongly inhibited both F-actin formation on MVEs and cargo sorting into exosomal intralumenal vesicles of MVEs, both of which were fully rescued by the simultaneous expression of constitutively active Cdc42 and Rac1. Our results shed light on the mechanism underlying exosomal MVE maturation and inform the understanding of the physiological relevance of continuous activation of the S1P receptor and subsequent downstream G protein signaling to Gβγ subunits/Rho family GTPases-regulated F-actin formation on MVEs for cargo sorting into exosomal intralumenal vesicles.
外泌体通过将货物分子递送到受体细胞在细胞间通讯中发挥关键作用。然而,外泌体多泡体(MVE)生成的机制是内体研究领域的谜团之一。尽管已知鞘脂代谢物,如神经酰胺和鞘氨醇 1-磷酸(S1P),在 MVE 的形成和成熟中发挥重要作用,但详细的分子机制仍不清楚。在这里,我们表明 Rho 家族 GTPases,包括 Cdc42 和 Rac1,在 MVE 上持续激活,并通过荧光共振能量转移(FRET)构象变化来调节 S1P 信号。此外,我们检测到 S1P 信号诱导的丝状肌动蛋白(F-actin)形成。Gβγ亚基的选择性抑制剂 M119 强烈抑制 MVE 上的 F-actin 形成和货物分拣到 MVE 的外泌体腔室内小泡中,这两种作用都被同时表达组成性激活的 Cdc42 和 Rac1 完全挽救。我们的结果阐明了外泌体 MVE 成熟的机制,并揭示了持续激活 S1P 受体及其随后的下游 G 蛋白信号传导对 Gβγ亚基/Rho 家族 GTPases 调节的 F-actin 形成的生理相关性的理解,这种作用对于货物分拣到 MVE 的外泌体腔室内小泡中非常重要。