Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan.
J Tissue Eng Regen Med. 2018 Apr;12(4):1111-1122. doi: 10.1002/term.2611. Epub 2017 Dec 27.
The incorporation of inorganic materials into electrospun nanofibres has recently gained considerable attention for the development of extracellular matrix-like scaffolds with improved mechanical properties and enhanced biological functions for tissue engineering applications. In this study, polymer-inorganic composite fibres consisting of poly(2-ethyl-2-oxazoline) (PEOXA) and tetrabutyl titanate as the titanium precursor were successfully fabricated through a combined sol-gel/electrospinning approach. PEOXA/Ti(OR) composite fibres were obtained with varying amounts of polymer and titanium precursors. Calcinations of the composite fibres were performed at varying temperatures to produce TiO fibres (TiO -T-60) with anatase, anatase/rutile mixed phase, and rutile crystal structures. Thin polymer films (i.e., poly(2-ethyl-2-oxazoline) (PEOXA), polycaprolactone (PCL), and poly(methyl methacrylate) (PMMA)) were subsequently deposited onto TiO -T-60 fibre mats by spin coating to facilitate handling of the electrospun substrates after calcination, which are rather brittle and disintegrate easily, and to probe cell-materials interactions. The cellular behaviour of mouse L929 fibroblasts after culture periods of 1-5 days was compared on the following fibre scaffolds: PEOXA/Ti(OR) , TiO -T-60 (T = 600, 650, and 700 °C), TiO -T-60 spin-coated with thin PCL film (PCL/TiO -T-60), and pure PCL. The results obtained from in vitro cell culture studies for the lactate dehydrogenase release assay and confocal microscopic visualization pointed out the synergistic interplay between the TiO crystal structure and spin-coated PCL film in facilitating cell interactions with the scaffold surface. The L929 cells were observed to adhere and proliferate better on the surface of TiO -700-60 having the rutile structure than on the surfaces of TiO -600-60 and TiO -650-60 fibre scaffolds with anatase and anatase/rutile mixed phase structures, respectively.
将无机材料纳入电纺纳米纤维中,最近引起了相当大的关注,因为它可以开发出具有改善的机械性能和增强的生物学功能的细胞外基质样支架,用于组织工程应用。在这项研究中,通过溶胶-凝胶/静电纺丝方法成功制备了由聚(2-乙基-2-恶唑啉)(PEOXA)和四丁醇钛作为钛前体制成的聚合物-无机复合纤维。通过改变聚合物和钛前体的用量,获得了不同含量的 PEOXA/Ti(OR)复合纤维。对复合纤维进行煅烧,在不同温度下制备出具有锐钛矿、锐钛矿/金红石混合相和金红石晶体结构的 TiO 纤维(TiO-T-60)。随后通过旋涂将薄的聚合物膜(即聚(2-乙基-2-恶唑啉)(PEOXA)、聚己内酯(PCL)和聚甲基丙烯酸甲酯(PMMA))沉积到 TiO-T-60 纤维垫上,以方便处理煅烧后的电纺基底,因为它们相当脆,容易分解,并且可以探测细胞-材料相互作用。在培养 1-5 天后,比较了以下纤维支架上的小鼠 L929 成纤维细胞的细胞行为:PEOXA/Ti(OR)、TiO-T-60(T=600、650 和 700°C)、涂有薄 PCL 膜的 TiO-T-60(PCL/TiO-T-60)和纯 PCL。通过体外细胞培养研究乳酸脱氢酶释放测定和共聚焦显微镜可视化获得的结果表明,TiO 晶体结构和旋涂 PCL 膜之间的协同相互作用促进了细胞与支架表面的相互作用。观察到 L929 细胞在具有金红石结构的 TiO-700-60 表面上的粘附和增殖情况要好于具有锐钛矿和锐钛矿/金红石混合相结构的 TiO-600-60 和 TiO-650-60 纤维支架表面。