Suppr超能文献

恶性胸腔积液中肿瘤细胞特异性药物反应的评估

evaluation of tumor cell specific drug responses in malignant pleural effusions.

作者信息

Hillerdal Carl-Olof, Ötvös Rita, Szatmári Tünde, Own Sulaf Abd, Hillerdal Gunnar, Dackland Åsa-Lena, Dobra Katalin, Hjerpe Anders

机构信息

Karolinska Institutet, Department of Laboratory Medicine, Division of Pathology, Karolinska University Hospital, SE-141 86 Stockholm, Sweden.

Gävle Hospital, Department of Lung Medicine, 803 24 Gävle, Sweden.

出版信息

Oncotarget. 2017 Sep 15;8(47):82885-82896. doi: 10.18632/oncotarget.20889. eCollection 2017 Oct 10.

Abstract

The effect of chemotherapy may be improved by combining the most effective drugs based on testing the sensitivity of the individual tumor . Such estimations of tumor cells from effusions have so far not been implemented in the clinical routine as a basis for individualized choice of therapy. One obstacle for such analyses is the admixture of benign cells that might obscure the results. In this paper we test and compare two ways of performing the analysis specifically on tumor cells. First we enrich the tumor cells, using antibody labeled magnetic separation, and measure the effects of subsequent drug exposure with the metabolic activity assays WST-1 and alamar blue. The second way of estimating drug effects specifically on tumor cells employs multi parameter flow cytometry, measuring apoptosis with the propidium iodide / AnnexinV technique and, particularly for pemetrexed, possible effects on cell cycle progression in immunologically identified tumor cells. The two techniques produce similar results, indicating a possible use in personalized medicine. The possible predictive role of the analysis remains to be shown.

摘要

通过基于个体肿瘤敏感性测试来组合最有效的药物,化疗效果可能会得到改善。迄今为止,尚未将来自积液的肿瘤细胞的此类评估作为个体化治疗选择的基础应用于临床常规操作中。此类分析的一个障碍是良性细胞的混合,这可能会使结果模糊不清。在本文中,我们测试并比较了两种专门针对肿瘤细胞进行分析的方法。首先,我们使用抗体标记的磁分离技术富集肿瘤细胞,并通过代谢活性测定WST-1和alamar蓝来测量后续药物暴露的效果。专门评估药物对肿瘤细胞作用的第二种方法采用多参数流式细胞术,用碘化丙啶/膜联蛋白V技术测量细胞凋亡,特别是对于培美曲塞,测量其对免疫鉴定的肿瘤细胞中细胞周期进程的可能影响。这两种技术产生了相似的结果,表明其在个性化医疗中可能具有应用价值。该分析的可能预测作用仍有待证明。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e121/5669936/79a4064dc2c1/oncotarget-08-82885-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验