Suppr超能文献

相互作用的微小RNA-靶基因相互作用网络上的随机游走改善了疾病相关微小RNA的预测。

Random walks on mutual microRNA-target gene interaction network improve the prediction of disease-associated microRNAs.

作者信息

Le Duc-Hau, Verbeke Lieven, Son Le Hoang, Chu Dinh-Toi, Pham Van-Huy

机构信息

Vinmec Research Institute of Stem Cell and Gene Technology, 458 Minh Khai, Hai Ba Trung, Hanoi, Vietnam.

Department of Information Technology, Ghent University - imec, Ghent, Belgium.

出版信息

BMC Bioinformatics. 2017 Nov 14;18(1):479. doi: 10.1186/s12859-017-1924-1.

Abstract

BACKGROUND

MicroRNAs (miRNAs) have been shown to play an important role in pathological initiation, progression and maintenance. Because identification in the laboratory of disease-related miRNAs is not straightforward, numerous network-based methods have been developed to predict novel miRNAs in silico. Homogeneous networks (in which every node is a miRNA) based on the targets shared between miRNAs have been widely used to predict their role in disease phenotypes. Although such homogeneous networks can predict potential disease-associated miRNAs, they do not consider the roles of the target genes of the miRNAs. Here, we introduce a novel method based on a heterogeneous network that not only considers miRNAs but also the corresponding target genes in the network model.

RESULTS

Instead of constructing homogeneous miRNA networks, we built heterogeneous miRNA networks consisting of both miRNAs and their target genes, using databases of known miRNA-target gene interactions. In addition, as recent studies demonstrated reciprocal regulatory relations between miRNAs and their target genes, we considered these heterogeneous miRNA networks to be undirected, assuming mutual miRNA-target interactions. Next, we introduced a novel method (RWRMTN) operating on these mutual heterogeneous miRNA networks to rank candidate disease-related miRNAs using a random walk with restart (RWR) based algorithm. Using both known disease-associated miRNAs and their target genes as seed nodes, the method can identify additional miRNAs involved in the disease phenotype. Experiments indicated that RWRMTN outperformed two existing state-of-the-art methods: RWRMDA, a network-based method that also uses a RWR on homogeneous (rather than heterogeneous) miRNA networks, and RLSMDA, a machine learning-based method. Interestingly, we could relate this performance gain to the emergence of "disease modules" in the heterogeneous miRNA networks used as input for the algorithm. Moreover, we could demonstrate that RWRMTN is stable, performing well when using both experimentally validated and predicted miRNA-target gene interaction data for network construction. Finally, using RWRMTN, we identified 76 novel miRNAs associated with 23 disease phenotypes which were present in a recent database of known disease-miRNA associations.

CONCLUSIONS

Summarizing, using random walks on mutual miRNA-target networks improves the prediction of novel disease-associated miRNAs because of the existence of "disease modules" in these networks.

摘要

背景

微小RNA(miRNA)已被证明在病理发生、发展和维持过程中发挥重要作用。由于在实验室中鉴定与疾病相关的miRNA并非易事,因此已开发出许多基于网络的方法来在计算机上预测新的miRNA。基于miRNA之间共享的靶标构建的同质性网络(其中每个节点都是一个miRNA)已被广泛用于预测其在疾病表型中的作用。尽管此类同质性网络可以预测潜在的疾病相关miRNA,但它们没有考虑miRNA靶基因的作用。在此,我们介绍一种基于异质性网络的新方法,该方法在网络模型中不仅考虑了miRNA,还考虑了相应的靶基因。

结果

我们没有构建同质性miRNA网络,而是利用已知miRNA-靶基因相互作用的数据库构建了由miRNA及其靶基因组成的异质性miRNA网络。此外,由于最近的研究表明miRNA与其靶基因之间存在相互调控关系,我们认为这些异质性miRNA网络是无向的,假定存在miRNA-靶标相互作用。接下来,我们介绍了一种在这些相互的异质性miRNA网络上运行的新方法(RWRMTN),使用基于重启随机游走(RWR)的算法对候选疾病相关miRNA进行排序。使用已知的疾病相关miRNA及其靶基因作为种子节点,该方法可以识别出参与疾病表型的其他miRNA。实验表明,RWRMTN优于两种现有的先进方法:RWRMDA,一种同样在同质性(而非异质性)miRNA网络上使用RWR的基于网络的方法,以及RLSMDA,一种基于机器学习的方法。有趣的是,我们可以将这种性能提升与用作算法输入的异质性miRNA网络中“疾病模块”的出现联系起来。此外,我们可以证明RWRMTN是稳定的,在使用实验验证的和预测的miRNA-靶基因相互作用数据进行网络构建时都表现良好。最后,使用RWRMTN,我们鉴定出了76个与23种疾病表型相关的新miRNA,这些miRNA存在于最近的已知疾病-miRNA关联数据库中。

结论

总之,由于这些网络中存在“疾病模块”,在相互的miRNA-靶标网络上进行随机游走可改善对新的疾病相关miRNA的预测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2afb/5686822/481be1ae17d5/12859_2017_1924_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验