文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

利用改进的带重启随机游走和整合多种相似性来预测 miRNA-疾病关联。

Predicting miRNA-disease associations using improved random walk with restart and integrating multiple similarities.

机构信息

Faculty of Information Technology, Hanoi National University of Education, Hanoi, Vietnam.

Faculty of Information Technology, Hanoi University of Industry, 298 Cau Dien Street, Bac Tu Liem District, Hanoi, Vietnam.

出版信息

Sci Rep. 2021 Oct 26;11(1):21071. doi: 10.1038/s41598-021-00677-w.


DOI:10.1038/s41598-021-00677-w
PMID:34702958
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8548500/
Abstract

Predicting beneficial and valuable miRNA-disease associations (MDAs) by doing biological laboratory experiments is costly and time-consuming. Proposing a forceful and meaningful computational method for predicting MDAs is essential and captivated many computer scientists in recent years. In this paper, we proposed a new computational method to predict miRNA-disease associations using improved random walk with restart and integrating multiple similarities (RWRMMDA). We used a WKNKN algorithm as a pre-processing step to solve the problem of sparsity and incompletion of data to reduce the negative impact of a large number of missing associations. Two heterogeneous networks in disease and miRNA spaces were built by integrating multiple similarity networks, respectively, and different walk probabilities could be designated to each linked neighbor node of the disease or miRNA node in line with its degree in respective networks. Finally, an improve extended random walk with restart algorithm based on miRNA similarity-based and disease similarity-based heterogeneous networks was used to calculate miRNA-disease association prediction probabilities. The experiments showed that our proposed method achieved a momentous performance with Global LOOCV AUC (Area Under Roc Curve) and AUPR (Area Under Precision-Recall Curve) values of 0.9882 and 0.9066, respectively. And the best AUC and AUPR values under fivefold cross-validation of 0.9855 and 0.8642 which are proven by statistical tests, respectively. In comparison with other previous related methods, it outperformed than NTSHMDA, PMFMDA, IMCMDA and MCLPMDA methods in both AUC and AUPR values. In case studies of Breast Neoplasms, Carcinoma Hepatocellular and Stomach Neoplasms diseases, it inferred 1, 12 and 7 new associations out of top 40 predicted associated miRNAs for each disease, respectively. All of these new inferred associations have been confirmed in different databases or literatures.

摘要

通过生物实验来预测有益且有价值的 miRNA 与疾病关联(miRNA-Disease Associations,MDAs)既昂贵又耗时。因此,近年来,提出一种强有力且有意义的计算方法来预测 MDAs 成为当务之急,并吸引了许多计算机科学家的关注。在本文中,我们提出了一种新的计算方法,用于使用改进的带有重启动的随机游走和整合多种相似性(RWRMMDA)来预测 miRNA 与疾病关联。我们使用 WKNKN 算法作为预处理步骤,解决了数据稀疏和不完整的问题,以减少大量缺失关联的负面影响。通过整合多个相似性网络,分别构建疾病和 miRNA 空间中的两个异构网络,并可以根据疾病或 miRNA 节点在各自网络中的度,为每个连接的邻居节点指定不同的游走概率。最后,基于 miRNA 相似性和疾病相似性的异构网络,使用改进的扩展随机游走重启动算法来计算 miRNA 与疾病关联的预测概率。实验表明,我们提出的方法在全局 LOOCV AUC(ROC 曲线下面积)和 AUPR(精度-召回曲线下面积)方面表现出色,分别达到 0.9882 和 0.9066。在五重交叉验证下,AUC 和 AUPR 的最佳值分别为 0.9855 和 0.8642,且均通过统计检验证明。与其他先前的相关方法相比,在 AUC 和 AUPR 值方面,我们的方法优于 NTSHMDA、PMFMDA、IMCMDA 和 MCLPMDA 方法。在乳腺癌、肝癌和胃癌疾病的案例研究中,我们分别从每个疾病的前 40 个预测相关 miRNA 中推断出 1、12 和 7 个新关联,这些新推断出的关联都在不同的数据库或文献中得到了证实。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4cb3/8548500/54f33580e138/41598_2021_677_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4cb3/8548500/f98ef3be5986/41598_2021_677_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4cb3/8548500/4a012a696341/41598_2021_677_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4cb3/8548500/41239861d6b2/41598_2021_677_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4cb3/8548500/d33f172a179f/41598_2021_677_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4cb3/8548500/44e12f144564/41598_2021_677_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4cb3/8548500/2b2da8ab059f/41598_2021_677_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4cb3/8548500/9f57cf96000c/41598_2021_677_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4cb3/8548500/54f33580e138/41598_2021_677_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4cb3/8548500/f98ef3be5986/41598_2021_677_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4cb3/8548500/4a012a696341/41598_2021_677_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4cb3/8548500/41239861d6b2/41598_2021_677_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4cb3/8548500/d33f172a179f/41598_2021_677_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4cb3/8548500/44e12f144564/41598_2021_677_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4cb3/8548500/2b2da8ab059f/41598_2021_677_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4cb3/8548500/9f57cf96000c/41598_2021_677_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4cb3/8548500/54f33580e138/41598_2021_677_Fig8_HTML.jpg

相似文献

[1]
Predicting miRNA-disease associations using improved random walk with restart and integrating multiple similarities.

Sci Rep. 2021-10-26

[2]
Inferring miRNA-disease associations using collaborative filtering and resource allocation on a tripartite graph.

BMC Med Genomics. 2021-11-17

[3]
Prediction of MicroRNA-Disease Potential Association Based on Sparse Learning and Multilayer Random Walks.

J Comput Biol. 2024-3

[4]
A novel miRNA-disease association prediction model using dual random walk with restart and space projection federated method.

PLoS One. 2021

[5]
PBMDA: A novel and effective path-based computational model for miRNA-disease association prediction.

PLoS Comput Biol. 2017-3-24

[6]
An improved random forest-based computational model for predicting novel miRNA-disease associations.

BMC Bioinformatics. 2019-12-3

[7]
Predicting miRNA-disease association from heterogeneous information network with GraRep embedding model.

Sci Rep. 2020-4-20

[8]
Predicting miRNA-disease association based on inductive matrix completion.

Bioinformatics. 2018-12-15

[9]
Prediction of Disease-related microRNAs through Integrating Attributes of microRNA Nodes and Multiple Kinds of Connecting Edges.

Molecules. 2019-8-26

[10]
HNMDA: heterogeneous network-based miRNA-disease association prediction.

Mol Genet Genomics. 2018-4-23

引用本文的文献

[1]
A Deep Differential Analysis in Four Subtypes of Breast Cancer Based on Regulations of miRNA-mRNA.

IET Syst Biol. 2025

[2]
CluF: an unsupervised iterative cluster-fusion method for patient stratification using multiomics data.

Bioinform Adv. 2024-1-30

[3]
Inferring pseudogene-MiRNA associations based on an ensemble learning framework with similarity kernel fusion.

Sci Rep. 2023-5-31

[4]
A Survey on Computational Methods for Investigation on ncRNA-Disease Association through the Mode of Action Perspective.

Int J Mol Sci. 2022-9-29

[5]
Overview of methods for characterization and visualization of a protein-protein interaction network in a multi-omics integration context.

Front Mol Biosci. 2022-9-8

本文引用的文献

[1]
A novel miRNA-disease association prediction model using dual random walk with restart and space projection federated method.

PLoS One. 2021

[2]
Investigation of the miRNA and mRNA Coexpression Network and Their Prognostic Value in Hepatocellular Carcinoma.

Biomed Res Int. 2020

[3]
MCCMF: collaborative matrix factorization based on matrix completion for predicting miRNA-disease associations.

BMC Bioinformatics. 2020-10-14

[4]
Roles of microRNAs in Ovarian Cancer Tumorigenesis: Two Decades Later, What Have We Learned?

Front Oncol. 2020-7-21

[5]
MicroRNA-based biomarkers for diagnosis of non-small cell lung cancer (NSCLC).

Thorac Cancer. 2020-3

[6]
Role of microRNAs as Clinical Cancer Biomarkers for Ovarian Cancer: A Short Overview.

Cells. 2020-1-9

[7]
Overexpression of MiR-452-5p in hepatocellular carcinoma tissues and its prospective signaling pathways.

Int J Clin Exp Pathol. 2019-11-1

[8]
NCMCMDA: miRNA-disease association prediction through neighborhood constraint matrix completion.

Brief Bioinform. 2021-1-18

[9]
Identifying Potential miRNAs-Disease Associations With Probability Matrix Factorization.

Front Genet. 2019-12-11

[10]
Prognostic role of microRNAs in breast cancer: A systematic review.

Oncotarget. 2019-12-24

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索