Faculty of Information Technology, Hanoi National University of Education, Hanoi, Vietnam.
Faculty of Information Technology, Hanoi University of Industry, 298 Cau Dien Street, Bac Tu Liem District, Hanoi, Vietnam.
Sci Rep. 2021 Oct 26;11(1):21071. doi: 10.1038/s41598-021-00677-w.
Predicting beneficial and valuable miRNA-disease associations (MDAs) by doing biological laboratory experiments is costly and time-consuming. Proposing a forceful and meaningful computational method for predicting MDAs is essential and captivated many computer scientists in recent years. In this paper, we proposed a new computational method to predict miRNA-disease associations using improved random walk with restart and integrating multiple similarities (RWRMMDA). We used a WKNKN algorithm as a pre-processing step to solve the problem of sparsity and incompletion of data to reduce the negative impact of a large number of missing associations. Two heterogeneous networks in disease and miRNA spaces were built by integrating multiple similarity networks, respectively, and different walk probabilities could be designated to each linked neighbor node of the disease or miRNA node in line with its degree in respective networks. Finally, an improve extended random walk with restart algorithm based on miRNA similarity-based and disease similarity-based heterogeneous networks was used to calculate miRNA-disease association prediction probabilities. The experiments showed that our proposed method achieved a momentous performance with Global LOOCV AUC (Area Under Roc Curve) and AUPR (Area Under Precision-Recall Curve) values of 0.9882 and 0.9066, respectively. And the best AUC and AUPR values under fivefold cross-validation of 0.9855 and 0.8642 which are proven by statistical tests, respectively. In comparison with other previous related methods, it outperformed than NTSHMDA, PMFMDA, IMCMDA and MCLPMDA methods in both AUC and AUPR values. In case studies of Breast Neoplasms, Carcinoma Hepatocellular and Stomach Neoplasms diseases, it inferred 1, 12 and 7 new associations out of top 40 predicted associated miRNAs for each disease, respectively. All of these new inferred associations have been confirmed in different databases or literatures.
通过生物实验来预测有益且有价值的 miRNA 与疾病关联(miRNA-Disease Associations,MDAs)既昂贵又耗时。因此,近年来,提出一种强有力且有意义的计算方法来预测 MDAs 成为当务之急,并吸引了许多计算机科学家的关注。在本文中,我们提出了一种新的计算方法,用于使用改进的带有重启动的随机游走和整合多种相似性(RWRMMDA)来预测 miRNA 与疾病关联。我们使用 WKNKN 算法作为预处理步骤,解决了数据稀疏和不完整的问题,以减少大量缺失关联的负面影响。通过整合多个相似性网络,分别构建疾病和 miRNA 空间中的两个异构网络,并可以根据疾病或 miRNA 节点在各自网络中的度,为每个连接的邻居节点指定不同的游走概率。最后,基于 miRNA 相似性和疾病相似性的异构网络,使用改进的扩展随机游走重启动算法来计算 miRNA 与疾病关联的预测概率。实验表明,我们提出的方法在全局 LOOCV AUC(ROC 曲线下面积)和 AUPR(精度-召回曲线下面积)方面表现出色,分别达到 0.9882 和 0.9066。在五重交叉验证下,AUC 和 AUPR 的最佳值分别为 0.9855 和 0.8642,且均通过统计检验证明。与其他先前的相关方法相比,在 AUC 和 AUPR 值方面,我们的方法优于 NTSHMDA、PMFMDA、IMCMDA 和 MCLPMDA 方法。在乳腺癌、肝癌和胃癌疾病的案例研究中,我们分别从每个疾病的前 40 个预测相关 miRNA 中推断出 1、12 和 7 个新关联,这些新推断出的关联都在不同的数据库或文献中得到了证实。
PLoS Comput Biol. 2017-3-24
BMC Bioinformatics. 2019-12-3
Bioinformatics. 2018-12-15
Mol Genet Genomics. 2018-4-23
BMC Bioinformatics. 2020-10-14
Thorac Cancer. 2020-3
Int J Clin Exp Pathol. 2019-11-1
Brief Bioinform. 2021-1-18
Front Genet. 2019-12-11
Oncotarget. 2019-12-24