Rivera-de-Torre Esperanza, Palacios-Ortega Juan, García-Linares Sara, Gavilanes José G, Martínez-Del-Pozo Álvaro
Departamento de Bioquímica y Biología Molecular I, Facultades de Química y Biología, Universidad Complutense, 28040 Madrid, Spain.
Departamento de Bioquímica y Biología Molecular I, Facultades de Química y Biología, Universidad Complutense, 28040 Madrid, Spain.
Arch Biochem Biophys. 2017 Dec 15;636:79-89. doi: 10.1016/j.abb.2017.11.005. Epub 2017 Nov 11.
Sticholysins I and II (StnI and StnII), α-pore forming toxins from the sea anemone Stichodactyla helianthus, are water-soluble toxic proteins which upon interaction with lipid membranes of specific composition bind to the bilayer, extend and insert their N-terminal α-helix, and become oligomeric integral membrane structures. The result is a pore that leads to cell death by osmotic shock. StnI and StnII show 93% of sequence identity, but also different membrane pore-forming activities. The hydrophobicity profile along the first 18 residues revealed differences which were canceled by substituting StnI amino acids 2 and 9. Accordingly, the StnID9A mutant, and the corresponding StnIE2AD9A variant, showed enhanced hemolytic activity. They also revealed a key role for an exposed salt bridge between Asp9 and Lys68. This interaction is not possible in StnII but appears conserved in the other two well-characterized actinoporins, equinatoxin II and fragaceatoxin C. The StnII mutant A8D showed that this single replacement was enough to transform StnII into a version with impaired pore-forming activity. Overall, the results show the key importance of this salt bridge linking the N-terminal stretch to the β-sandwich core. A conclusion of general application for the understanding of salt bridges role in protein design, folding and stability.
刺参溶细胞素I和II(StnI和StnII)是来自海葵壮丽海葵的α-孔形成毒素,它们是水溶性有毒蛋白质,与特定组成的脂质膜相互作用时会结合到双层膜上,伸展并插入其N端α-螺旋,形成寡聚整合膜结构。结果是形成一个孔,导致细胞因渗透休克而死亡。StnI和StnII的序列同一性为93%,但膜孔形成活性也不同。前18个残基的疏水性图谱显示出差异,通过替换StnI的第2和第9位氨基酸可消除这些差异。因此,StnID9A突变体以及相应的StnIE2AD9A变体表现出增强的溶血活性。它们还揭示了Asp9和Lys68之间暴露的盐桥的关键作用。这种相互作用在StnII中不可能发生,但在另外两种特征明确的放线菌毒素——海葵毒素II和脆海绵毒素C中似乎是保守的。StnII突变体A8D表明,这种单一替换足以将StnII转化为一种孔形成活性受损的变体。总体而言,结果表明这种连接N端延伸区与β-三明治核心的盐桥至关重要。这一结论对于理解盐桥在蛋白质设计、折叠和稳定性中的作用具有普遍意义。