Suppr超能文献

基于样本的蛋白质能量景观模型与缓慢的结构重排

Sample-Based Models of Protein Energy Landscapes and Slow Structural Rearrangements.

作者信息

Maximova Tatiana, Zhang Zijing, Carr Daniel B, Plaku Erion, Shehu Amarda

机构信息

1 Department of Computer Science, George Mason University , Fairfax, Virginia.

2 Department of Statistics, George Mason University , Fairfax, Virginia.

出版信息

J Comput Biol. 2018 Jan;25(1):33-50. doi: 10.1089/cmb.2017.0158. Epub 2017 Nov 15.

Abstract

Proteins often undergo slow structural rearrangements that involve several angstroms and surpass the nanosecond timescale. These spatiotemporal scales challenge physics-based simulations and open the way to sample-based models of structural dynamics. This article improves an understanding of current capabilities and limitations of sample-based models of dynamics. Borrowing from widely used concepts in evolutionary computation, this article introduces two conflicting aspects of sampling capability and quantifies them via statistical (and graphical) analysis tools. This allows not only conducting a principled comparison of different sample-based algorithms but also understanding which algorithmic ingredients to use as knobs via which to control sampling and, in turn, the accuracy and detail of modeled structural rearrangements. We demonstrate the latter by proposing two powerful variants of a recently published sample-based algorithm. We believe that this work will advance the adoption of sample-based models as reliable tools for modeling slow protein structural rearrangements.

摘要

蛋白质常常经历缓慢的结构重排,这种重排涉及几个埃的距离,并且超越了纳秒时间尺度。这些时空尺度对基于物理的模拟提出了挑战,并为基于采样的结构动力学模型开辟了道路。本文增进了对基于采样的动力学模型当前能力和局限性的理解。借鉴进化计算中广泛使用的概念,本文介绍了采样能力的两个相互冲突的方面,并通过统计(和图形)分析工具对其进行量化。这不仅允许对不同的基于采样的算法进行有原则的比较,还能理解使用哪些算法要素作为旋钮来控制采样,进而控制建模结构重排的准确性和细节。我们通过提出最近发表的一种基于采样的算法的两个强大变体来证明后者。我们相信这项工作将推动基于采样的模型作为可靠工具用于模拟缓慢的蛋白质结构重排。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验