Suppr超能文献

基于智能手机的全息传感器定量测量。

Smartphone-based quantitative measurements on holographic sensors.

作者信息

Khalili Moghaddam Gita, Lowe Christopher Robin

机构信息

Institute of Biotechnology, Department of Chemical Engineering and Biotechnology, Tennis Court Road, University of Cambridge, Cambridge, United Kingdom.

出版信息

PLoS One. 2017 Nov 15;12(11):e0187467. doi: 10.1371/journal.pone.0187467. eCollection 2017.

Abstract

The research reported herein integrates a generic holographic sensor platform and a smartphone-based colour quantification algorithm in order to standardise and improve the determination of the concentration of analytes of interest. The utility of this approach has been exemplified by analysing the replay colour of the captured image of a holographic pH sensor in near real-time. Personalised image encryption followed by a wavelet-based image compression method were applied to secure the image transfer across a bandwidth-limited network to the cloud. The decrypted and decompressed image was processed through four principal steps: Recognition of the hologram in the image with a complex background using a template-based approach, conversion of device-dependent RGB values to device-independent CIEXYZ values using a polynomial model of the camera and computation of the CIELab* values, use of the colour coordinates of the captured image to segment the image, select the appropriate colour descriptors and, ultimately, locate the region of interest (ROI), i.e. the hologram in this case, and finally, application of a machine learning-based algorithm to correlate the colour coordinates of the ROI to the analyte concentration. Integrating holographic sensors and the colour image processing algorithm potentially offers a cost-effective platform for the remote monitoring of analytes in real time in readily accessible body fluids by minimally trained individuals.

摘要

本文报道的研究集成了一个通用全息传感器平台和一种基于智能手机的颜色量化算法,以标准化和改进对感兴趣分析物浓度的测定。通过近乎实时地分析全息pH传感器捕获图像的重放颜色,例证了这种方法的实用性。应用个性化图像加密,随后采用基于小波的图像压缩方法,以确保在带宽受限的网络上向云端安全传输图像。解密和解压缩后的图像经过四个主要步骤进行处理:使用基于模板的方法识别具有复杂背景的图像中的全息图,使用相机的多项式模型将与设备相关的RGB值转换为与设备无关的CIEXYZ值并计算CIELab*值,利用捕获图像的颜色坐标对图像进行分割,选择合适的颜色描述符并最终定位感兴趣区域(ROI),在这种情况下即全息图,最后,应用基于机器学习的算法将ROI的颜色坐标与分析物浓度相关联。集成全息传感器和彩色图像处理算法有可能为经过最少培训的人员实时远程监测易获取体液中的分析物提供一个经济高效的平台。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0139/5687774/07afba888b3a/pone.0187467.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验