Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK.
Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
J R Soc Interface. 2017 Nov;14(136). doi: 10.1098/rsif.2017.0673.
Conditions on exoplanets include elevated temperatures and pressures. The response of carbon-based biological macromolecules to such conditions is then relevant to the viability of life. The capacity of proteins and ribozymes to catalyse reactions or bind receptors, and nucleic acids to convey information, depends on them sampling different conformational states. These are determined by macromolecular vibrational states, or phonon modes, accessible using terahertz (THz: 10Hz) absorption spectroscopy. THz spectra of biological macromolecules exhibit broad absorption at approximately 6 THz (equating to approx. 280 K) corresponding to dense transitions between phonon modes. There are also troughs at approximately 10 THz (approx. 500 K) implying diminishing numbers of available conformational states at higher temperatures; hence, fewer routes by which biochemical processes can be realized, as equilibrium is approached. Could this conformational bottleneck hinder the operation of biological macromolecules at higher temperatures? We suggest that the troughs at approximately 10 THz in absorbance spectra indicate that the hydrogen bonds, charge interactions and geometry of biological macromolecules associated with terrestrial life impose fundamental vibrational properties that could limit the upper temperature at which they may function.
系外行星上的条件包括高温和高压。在这种条件下,碳基生物大分子的反应则与生命的存活能力相关。蛋白质和核酶催化反应或结合受体的能力,以及核酸传递信息的能力,取决于它们对不同构象状态的采样。这些构象状态由大分子振动状态或声子模式决定,可使用太赫兹(THz:10Hz)吸收光谱来获取。生物大分子的太赫兹光谱在大约 6 THz(相当于约 280 K)处表现出宽吸收,对应于声子模式之间的密集跃迁。在大约 10 THz(约 500 K)处也有低谷,这意味着在较高温度下,构象状态的数量减少;因此,随着平衡的接近,实现生化过程的途径减少。这种构象瓶颈会阻碍生物大分子在较高温度下的运作吗?我们认为,吸收光谱中大约 10 THz 处的低谷表明,与地球生命相关的生物大分子中的氢键、电荷相互作用和几何形状具有基本的振动特性,这可能限制了它们可能发挥作用的最高温度。