Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, Université Montpellier, Institut National de la Recherche Agronomique, Montpellier SupAgro, 34060 Montpellier, France
Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, Université Montpellier, Institut National de la Recherche Agronomique, Montpellier SupAgro, 34060 Montpellier, France.
Plant Physiol. 2018 Jan;176(1):704-716. doi: 10.1104/pp.17.00986. Epub 2017 Nov 15.
Process-based crop growth models are popular tools with which to analyze and understand the impact of crop management, genotype-by-environment interactions, or climate change. The ability to predict leaf area development is critical to predict crop growth, particularly under conditions of limited resources. Here, we aimed at deciphering growth coordination rules between wheat () plant organs (i.e. between leaves within a stem, between laminae and sheaths, and between the mainstem and axillary tillers) to model the dynamics of canopy development. We found a unique relationship between laminae area and leaf rank for the mainstem and its tillers, which was robust across a range of sowing dates and plant densities. Robust relationships between laminae and sheath areas also were found, highlighting the tight control of organ growth within and between phytomers. These relationships identified at the phytomer scale were used to develop a simulation model of leaf area dynamics at the canopy level that was integrated in the wheat model SiriusQuality. The model was then evaluated using several independent experiments. The model accurately predicts leaf area dynamics under different scenarios of nitrogen and water limitations. It accounted for 85%, 64%, and 73% of the variability of the surface area of leaf cohorts, total leaf area index, and total green area index, respectively. The process-based model of the dynamics of leaf area described here is a key element to quantify the value of candidate traits for use in plant breeding and to project the impact of climate change on wheat growth.
基于过程的作物生长模型是一种流行的工具,可用于分析和理解作物管理、基因型-环境互作或气候变化的影响。预测叶面积发育的能力对于预测作物生长至关重要,特别是在资源有限的情况下。在这里,我们旨在破译小麦()植物器官之间的生长协调规则(即茎内的叶片之间、叶片与叶鞘之间以及主茎和腋芽之间),以模拟冠层发育的动态。我们发现了主茎及其腋芽的叶片面积和叶位之间的独特关系,这种关系在一系列播种日期和植物密度下都是稳健的。还发现了叶片和叶鞘面积之间的稳健关系,突出了器官在同化物之间和内部的生长的紧密控制。在植物学尺度上确定的这些关系被用于开发一个在冠层水平上模拟叶片面积动态的模拟模型,该模型被集成到小麦模型 SiriusQuality 中。然后使用几个独立的实验对模型进行了评估。该模型可以准确预测不同氮和水分限制情况下的叶片面积动态。它分别解释了叶片群体表面积、总叶面积指数和总绿色面积指数的 85%、64%和 73%的变异性。这里描述的叶片面积动态的基于过程的模型是量化候选性状在植物育种中的价值和预测气候变化对小麦生长影响的关键要素。