Institute of Molecular and Cellular Biosciences, The University of Tokyo, Yayoi, Bunkyo-ku, 113-0032 Tokyo, Japan; Department of Computational Biology, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwanoha, Kashiwa, 277-0882 Chiba, Japan; CREATIS, Institut National des Sciences Appliquées de Lyon (INSA Lyon), 7 Avenue J Capelle, bat. Blaise Pascal, F-69621 Villeurbanne cedex, France.
CREATIS, Institut National des Sciences Appliquées de Lyon (INSA Lyon), 7 Avenue J Capelle, bat. Blaise Pascal, F-69621 Villeurbanne cedex, France.
Comput Biol Med. 2018 Jan 1;92:22-41. doi: 10.1016/j.compbiomed.2017.10.027. Epub 2017 Nov 8.
The possible depth of imaging of laser-scanning microscopy is limited not only by the working distances of objective lenses but also by image degradation caused by attenuation and diffraction of light passing through the specimen. To tackle this problem, one can either flip the sample to record images from both sides of the specimen or consecutively cut off shallow parts of the sample after taking serial images of certain thickness. Multiple image substacks acquired in these ways should be combined afterwards to generate a single stack. However, subtle movements of samples during image acquisition cause mismatch not only in the translation along x-, y-, and z-axes and rotation around z-axis but also tilting around x- and y-axes, making it difficult to register the substacks precisely. In this work, we developed a novel approach called 2D-SIFT-in-3D-Space using Scale Invariant Feature Transform (SIFT) to achieve robust three-dimensional matching of image substacks. Our method registers the substacks by separately fixing translation and rotation along x-, y-, and z-axes, through extraction and matching of stable features across two-dimensional sections of the 3D stacks. To validate the quality of registration, we developed a simulator of laser-scanning microscopy images to generate a virtual stack in which noise levels and rotation angles are controlled with known parameters. We illustrate quantitatively the performance of our approach by registering an entire brain of Drosophila melanogaster consisting of 800 sections. Our approach is also demonstrated to be extendable to other types of data that share large dimensions and need of fine registration of multiple image substacks. This method is implemented in Java and distributed as ImageJ/Fiji plugin. The source code is available via Github (http://www.creatis.insa-lyon.fr/site7/fr/MicroTools).
激光扫描显微镜的成像深度不仅受到物镜工作距离的限制,还受到通过样品的光衰减和衍射导致的图像退化的限制。为了解决这个问题,可以翻转样品以记录样品两侧的图像,或者在对一定厚度的样品进行连续拍摄后,依次切除浅层部分。以这种方式获取的多个图像子堆栈应在后续组合以生成单个堆栈。然而,在图像采集过程中,样品的细微运动不仅会导致 x、y 和 z 轴平移以及 z 轴旋转的不匹配,还会导致 x 和 y 轴倾斜的不匹配,使得难以精确地注册子堆栈。在这项工作中,我们开发了一种称为 2D-SIFT-in-3D-Space 的新方法,该方法使用 Scale Invariant Feature Transform(SIFT)实现了图像子堆栈的稳健三维匹配。我们的方法通过在 3D 堆栈的二维部分提取和匹配稳定特征,分别固定 x、y 和 z 轴的平移和旋转,对子堆栈进行注册。为了验证注册质量,我们开发了一个激光扫描显微镜图像模拟器,以生成一个虚拟堆栈,其中可以使用已知参数控制噪声水平和旋转角度。我们通过注册由 800 个切片组成的整个 Drosophila melanogaster 大脑来定量说明我们方法的性能。我们还证明了该方法可以扩展到其他类型的数据,这些数据具有较大的维度并且需要对多个图像子堆栈进行精细注册。该方法是用 Java 实现的,并作为 ImageJ/Fiji 插件发布。源代码可通过 Github(http://www.creatis.insa-lyon.fr/site7/fr/MicroTools)获得。