Suppr超能文献

白色念珠菌线粒体电子传递链复合体突变体的呼吸应激激活 SNF1 激酶反应。

Respiratory stress in mitochondrial electron transport chain complex mutants of Candida albicans activates Snf1 kinase response.

机构信息

Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC 20057, USA; Sport Science Research Center, Shandong Sport University, Jinan 250102, China.

Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC 20057, USA; Department of Dermatology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650031, China.

出版信息

Fungal Genet Biol. 2018 Feb;111:73-84. doi: 10.1016/j.fgb.2017.11.002. Epub 2017 Nov 13.

Abstract

We have previously established that mitochondrial Complex I (CI) mutants of Candida albicans display reduced oxygen consumption, decreased ATP production, and increased reactive oxidant species (ROS) during cell growth. Using the Seahorse XF96 analyzer, the energetic phenotypes of Electron Transport Chain (ETC) complex mutants are further characterized in the current study. The underlying regulation of energetic changes in these mutants is determined in glucose and non-glucose conditions when compared to wild type (WT) cells. In parental cells, the rate of oxygen consumption remains constant for 2.5 h following the addition of glucose, oligomycin, and 2-DG, but glycolysis is highly active upon the addition of glucose. In comparison, over the same time period, electron transport complex mutants (CI, CIII and CIV) have heightened activities in both oxygen consumption and glycolysis upon glucose uptake. We refer to the response in these mutants as an "explosive respiration," which we believe is caused by low energy levels and increased production of reactive oxygen species (ROS). Accompanying this phenotype in mutants is a hyperphosphorylation of Snf1p which in Saccharomyces cerevisiae serves as an energetic stress response protein kinase for maintaining energy homeostasis. Compared to wild type cells, a 2.9- to 4.4-fold hyperphosphorylation of Snf1p is observed in all ETC mutants in the presence of glucose. However, the explosive respiration and hyperphosphorylation of Snf1 can be partially reduced by the replacement of glucose with either glycerol or oleic acid in a mutant-specific manner. Furthermore, Inhibitors of glutathione synthesis (BSO) or anti-oxidants (mito-TEMPO) likewise confirmed an increase of Sfn1 phosphorylation in WT or mutant due to increased levels of ROS. Our data establish the role of the C. albicans Snf1 as a surveyor of cell energy and ROS levels. We interpret the "explosive respiration" as a failed attempt by ETC mutants to restore energy and ROS homeostasis via Snf1 activation. An inherently high OCR baseline in WT C. albicans with a background level of Snf1 activation is a prerequisite for success in quickly fermenting glucose.

摘要

我们之前已经证实,白色念珠菌的线粒体复合物 I (CI) 突变体在细胞生长过程中表现出耗氧量降低、ATP 生成减少和活性氧 (ROS) 增加。在本研究中,使用 Seahorse XF96 分析仪进一步表征了电子传递链 (ETC) 复合物突变体的能量表型。与野生型 (WT) 细胞相比,在葡萄糖和非葡萄糖条件下,确定了这些突变体中能量变化的潜在调节机制。在亲本细胞中,在添加葡萄糖、寡霉素和 2-DG 后,耗氧量在 2.5 小时内保持不变,但在添加葡萄糖后糖酵解非常活跃。相比之下,在相同的时间段内,电子传递复合物突变体 (CI、CIII 和 CIV) 在摄取葡萄糖后,耗氧量和糖酵解的活性都增加了。我们将这些突变体中的这种反应称为“爆发性呼吸”,我们认为这是由于能量水平低和活性氧 (ROS) 产生增加引起的。在突变体中,伴随着这种表型,Snf1p 的过度磷酸化,在酿酒酵母中,Snf1p 作为一种能量应激反应蛋白激酶,用于维持能量稳态。与野生型细胞相比,在所有 ETC 突变体中,葡萄糖存在时,Snf1p 的过度磷酸化程度为 2.9 到 4.4 倍。然而,通过以突变体特异性的方式用甘油或油酸代替葡萄糖,可以部分减少爆发性呼吸和 Snf1 的过度磷酸化。此外,谷胱甘肽合成抑制剂 (BSO) 或抗氧化剂 (mito-TEMPO) 同样证实,由于 ROS 水平的增加,WT 或突变体中的 Sfn1 磷酸化增加。我们的数据确立了白色念珠菌 Snf1 作为细胞能量和 ROS 水平的调查者的作用。我们将“爆发性呼吸”解释为 ETC 突变体试图通过 Snf1 激活来恢复能量和 ROS 稳态的失败尝试。WT 白色念珠菌固有地具有较高的 OCR 基线和背景水平的 Snf1 激活,这是快速发酵葡萄糖成功的前提条件。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验