Suppr超能文献

收缩细胞中应力纤维周转的动力学

Dynamics of Stress Fibers Turnover in Contractile Cells.

作者信息

Foucard Louis, Vernerey Franck J

机构信息

Ph.D. Student, Dept. of Civil, Environmental, and Architectural Engineering, Univ. of Colorado at Boulder, 1111 Engineering Dr., P.O. Box 428 UCB, Boulder, CO 80309-0428.

Assistant Professor, Dept. of Civil, Environmental, Architectural Engineering, Univ. of Colorado at Boulder, 1111 Engineering Dr., P.O. Box 428 UCB, Boulder, CO 80309-0428.

出版信息

J Eng Mech. 2012 Oct;138(10). doi: 10.1061/(ASCE)EM.1943-7889.0000430. Epub 2012 Mar 1.

Abstract

Numerous experiments have shown that contractile cells like fibroblasts adapt their internal structure to their microenvironment by generating and orienting a network of stress fibers (SFs). This phenomenon has been modeled in previous studies with stability analysis through calculation of the fiber's potential or strain energy, where SFs are assigned a constant elasticity. Recent experiments have shown that the elasticity in SFs is rate dependent, resulting in a different stress fiber organization under constant or cyclic stretching. Here, a thermodynamical model that describes the anisotropic polymerization of the contractile units into SFs via the calculation of the mechanochemical potential of the two constituents is proposed. The stretch-dependent part of the SF potential is made of two terms that describe the passive and active behavior of the SF. In this paper, it is shown that the contributions of these two terms vary widely under constant or cyclic stretching as the SFs exhibit a rate-dependent elasticity and lead to two very different anisotropic SF organizations. It is further demonstrated that the substrate stiffness as well as its Poisson's ratio and anisotropy play a crucial role in the formation and organization of the SFs, consistent with what has been observed in various experiments.

摘要

大量实验表明,成纤维细胞等收缩性细胞通过生成并定向应力纤维(SFs)网络,使其内部结构适应微环境。此前的研究通过计算纤维的势能或应变能进行稳定性分析对这一现象进行了建模,其中应力纤维被赋予恒定的弹性。最近的实验表明,应力纤维中的弹性与速率相关,在恒定或循环拉伸下会导致不同的应力纤维组织。在此,提出了一个热力学模型,该模型通过计算两种成分的机械化学势来描述收缩单元向应力纤维的各向异性聚合。应力纤维势能的拉伸依赖性部分由描述应力纤维被动和主动行为的两项组成。本文表明,由于应力纤维表现出与速率相关的弹性,在恒定或循环拉伸下这两项的贡献差异很大,并导致两种截然不同的各向异性应力纤维组织。进一步证明,基底刚度及其泊松比和各向异性在应力纤维的形成和组织中起着关键作用,这与在各种实验中观察到的结果一致。

相似文献

1
Dynamics of Stress Fibers Turnover in Contractile Cells.
J Eng Mech. 2012 Oct;138(10). doi: 10.1061/(ASCE)EM.1943-7889.0000430. Epub 2012 Mar 1.
2
Strain waveform dependence of stress fiber reorientation in cyclically stretched osteoblastic cells: effects of viscoelastic compression of stress fibers.
Am J Physiol Cell Physiol. 2012 May 15;302(10):C1469-78. doi: 10.1152/ajpcell.00155.2011. Epub 2012 Feb 22.
3
A Model for Stress Fiber Realignment Caused by Cytoskeletal Fluidization During Cyclic Stretching.
Cell Mol Bioeng. 2011 Mar 1;4(1):67-80. doi: 10.1007/s12195-010-0152-9.
4
A dynamic stochastic model of frequency-dependent stress fiber alignment induced by cyclic stretch.
PLoS One. 2009;4(3):e4853. doi: 10.1371/journal.pone.0004853. Epub 2009 Mar 25.
5
Mechanical Stability Determines Stress Fiber and Focal Adhesion Orientation.
Cell Mol Bioeng. 2009 Dec 1;2(4):475-485. doi: 10.1007/s12195-009-0093-3.
6
A thermodynamical model for stress-fiber organization in contractile cells.
Appl Phys Lett. 2012 Jan 2;100(1):13702-137024. doi: 10.1063/1.3673551. Epub 2012 Jan 4.
7
Mechanical properties of actin stress fibers in living cells.
Biophys J. 2008 Dec 15;95(12):6060-71. doi: 10.1529/biophysj.108.133462. Epub 2008 Sep 26.

引用本文的文献

1
On the role of hydrogel structure and degradation in controlling the transport of cell-secreted matrix molecules for engineered cartilage.
J Mech Behav Biomed Mater. 2013 Mar;19:61-74. doi: 10.1016/j.jmbbm.2012.10.016. Epub 2012 Nov 9.

本文引用的文献

1
A constrained mixture approach to mechano-sensing and force generation in contractile cells.
J Mech Behav Biomed Mater. 2011 Nov;4(8):1683-99. doi: 10.1016/j.jmbbm.2011.05.022. Epub 2011 May 17.
2
Triphasic mixture model of cell-mediated enzymatic degradation of hydrogels.
Comput Methods Biomech Biomed Engin. 2012;15(11):1197-210. doi: 10.1080/10255842.2011.585973. Epub 2011 Aug 2.
3
Measurement of contractile forces generated by individual fibroblasts on self-standing fiber scaffolds.
Biomed Microdevices. 2011 Feb;13(1):107-15. doi: 10.1007/s10544-010-9475-5.
4
Cyclic stretch-induced stress fiber dynamics - dependence on strain rate, Rho-kinase and MLCK.
Biochem Biophys Res Commun. 2010 Oct 22;401(3):344-9. doi: 10.1016/j.bbrc.2010.09.046. Epub 2010 Sep 16.
5
A mechanical model of actin stress fiber formation and substrate elasticity sensing in adherent cells.
Proc Natl Acad Sci U S A. 2010 Apr 27;107(17):7757-62. doi: 10.1073/pnas.0912739107. Epub 2010 Apr 12.
6
Mechanical Stability Determines Stress Fiber and Focal Adhesion Orientation.
Cell Mol Bioeng. 2009 Dec 1;2(4):475-485. doi: 10.1007/s12195-009-0093-3.
7
A tense situation: forcing tumour progression.
Nat Rev Cancer. 2009 Feb;9(2):108-22. doi: 10.1038/nrc2544.
8
Cellular mechanobiology and cancer metastasis.
Birth Defects Res C Embryo Today. 2007 Dec;81(4):329-43. doi: 10.1002/bdrc.20110.
9
Actin stress fiber pre-extension in human aortic endothelial cells.
Cell Motil Cytoskeleton. 2008 Apr;65(4):281-94. doi: 10.1002/cm.20260.
10
The simulation of stress fibre and focal adhesion development in cells on patterned substrates.
J R Soc Interface. 2008 May 6;5(22):507-24. doi: 10.1098/rsif.2007.1182.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验