Department of Chemistry, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States.
Department of Chemistry and Nanoscience, Ewha Womans University , Seoul 03760, South Korea.
J Am Chem Soc. 2017 Dec 13;139(49):17811-17823. doi: 10.1021/jacs.7b04786. Epub 2017 Nov 30.
Functionalization of nanoparticles with biopolymers has yielded a wide range of structured and responsive hybrid materials. DNA provides the ability to program length and recognition using complementary oligonucleotide sequences. Nature more often leverages the versatility of proteins, however, where structure, assembly, and recognition are more subtle to engineer. Herein, a protein was computationally designed to present multiple Zn coordination sites and cooperatively self-associate to form an antiparallel helical homodimer. Each subunit was unstructured in the absence of Zn or when the cation was sequestered with a chelating agent. When bound to the surface of gold nanoparticles via cysteine, the protein provided a reversible molecular linkage between particles. Nanoparticle association and changes in interparticle separation were monitored by redshifts in the surface plasmon resonance (SPR) band and by transmission electron microscopy (TEM). Titrations with Zn revealed sigmoidal transitions at submicromolar concentrations. The metal-ion concentration required to trigger association varied with the loading of the proteins on the nanoparticles, the solution ionic strength, and the cation employed. Specifying the number of helical (heptad) repeat units conferred control over protein length and nanoparticle separation. Two different length proteins were designed via extension of the helical structure. TEM and extinction measurements revealed distributions of nanoparticle separations consistent with the expected protein structures. Nanoparticle association, interparticle separation, and SPR properties can be tuned using computationally designed proteins, where protein structure, folding, length, and response to molecular species such as Zn can be engineered.
通过将生物聚合物功能化,已经得到了广泛的结构化和响应性的杂化材料。DNA 提供了使用互补寡核苷酸序列来编程长度和识别的能力。然而,大自然更多地利用蛋白质的多功能性,其中结构、组装和识别更难以设计。在此,通过计算设计了一种蛋白质,使其呈现多个 Zn 配位位点,并协同自组装形成反平行螺旋同型二聚体。在没有 Zn 的情况下或当阳离子被螯合剂螯合时,每个亚基都是无结构的。当通过半胱氨酸结合到金纳米粒子的表面时,该蛋白质在粒子之间提供了一种可逆的分子连接。通过表面等离子体共振 (SPR) 带的红移和透射电子显微镜 (TEM) 监测纳米粒子的缔合和粒子间分离的变化。用 Zn 进行滴定显示出亚微摩尔浓度下的 S 形转变。触发缔合所需的金属离子浓度取决于蛋白质在纳米粒子上的负载、溶液离子强度和所使用的阳离子。指定螺旋 (七肽) 重复单元的数量赋予了对蛋白质长度和纳米粒子分离的控制。通过扩展螺旋结构设计了两种不同长度的蛋白质。TEM 和消光测量显示了与预期蛋白质结构一致的纳米粒子分离分布。可以使用计算设计的蛋白质来调节纳米粒子的缔合、粒子间的分离和 SPR 性质,其中可以设计蛋白质结构、折叠、长度以及对 Zn 等分子种类的响应。