Suppr超能文献

基于多相场模型上实施四维变分(4DVar)的数据同化的晶粒生长预测。

Grain growth prediction based on data assimilation by implementing 4DVar on multi-phase-field model.

作者信息

Ito Shin-Ichi, Nagao Hiromichi, Kasuya Tadashi, Inoue Junya

机构信息

Earthquake Research Institute, The University of Tokyo, Tokyo, Japan.

Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan.

出版信息

Sci Technol Adv Mater. 2017 Oct 30;18(1):857-869. doi: 10.1080/14686996.2017.1378921. eCollection 2017.

Abstract

We propose a method to predict grain growth based on data assimilation by using a four-dimensional variational method (4DVar). When implemented on a multi-phase-field model, the proposed method allows us to calculate the predicted grain structures and uncertainties in them that depend on the quality and quantity of the observational data. We confirm through numerical tests involving synthetic data that the proposed method correctly reproduces the true phase-field assumed in advance. Furthermore, it successfully quantifies uncertainties in the predicted grain structures, where such uncertainty quantifications provide valuable information to optimize the experimental design.

摘要

我们提出了一种基于数据同化的方法,通过使用四维变分方法(4DVar)来预测晶粒生长。当在多相场模型上实施时,该方法使我们能够计算取决于观测数据质量和数量的预测晶粒结构及其不确定性。通过涉及合成数据的数值测试,我们证实该方法能够正确再现预先假设的真实相场。此外,它成功地量化了预测晶粒结构中的不确定性,这种不确定性量化为优化实验设计提供了有价值的信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f67/5678441/0bdb6465d509/TSTA_A_1378921_UF0001_OC.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验