Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, CP6128 Succursale Centre-ville, Montréal, Québec H3C 3J7, Canada; Department of Biological Sciences, Middle East Technical University, Ankara 06800, Turkey.
Department of Biological Sciences, Middle East Technical University, Ankara 06800, Turkey.
Bioresour Technol. 2018 Feb;250:43-52. doi: 10.1016/j.biortech.2017.11.018. Epub 2017 Nov 9.
Hydrogen generation from complex substrates composed of simple sugars has the potential to mitigate future worldwide energy demand. The biohydrogen potential of a sequential microaerobic dark- and photo-fermentative system was investigated using immobilized Rhodobacter capsulatus JP91. Biological hydrogen production from glucose was carried out using a batch process and a bench-scale bioreactor. Response surface methodology with a Box-Behnken design was employed to optimize key parameters such as inoculum concentration, oxygen concentration, and glucose concentration. The maximum hydrogen production (21 ± 0.25 mmol H/L) and yield (7.8 ± 0.1 mol H/mol glucose) were obtained at 6 mM glucose, 4.5% oxygen and 62.5 v/v% inoculum concentration, demonstrating the feasibility of enhanced hydrogen production by immobilized R. capsulatus JP91 in a sequential system. This is the first time that a sequential process using an immobilized system has been described. This system also achieved the highest hydrogen yield obtained by an immobilized system so far.
利用由简单糖组成的复杂底物产氢具有缓解未来全球能源需求的潜力。使用固定化 Rhodobacter capsulatus JP91 研究了顺序微需氧暗发酵-光发酵系统的生物氢气潜力。利用分批培养和台式生物反应器进行了葡萄糖的生物制氢。采用 Box-Behnken 设计的响应面法优化了关键参数,如接种浓度、氧气浓度和葡萄糖浓度。在 6 mM 葡萄糖、4.5%氧气和 62.5%(v/v)接种浓度下,获得了最大的氢气产量(21 ± 0.25 mmol H/L)和产率(7.8 ± 0.1 mol H/mol 葡萄糖),证明了固定化 R. capsulatus JP91 在顺序系统中增强氢气生产的可行性。这是首次描述使用固定化系统的顺序过程。该系统还实现了迄今为止固定化系统获得的最高氢气产率。