Ning Pei, Zheng Zhihong, Aweya Jude Juventus, Yao Defu, Li Shengkang, Ma Hongyu, Wang Fan, Zhang Yueling
Department of Biology and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China.
Department of Biology and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China.
Dev Comp Immunol. 2018 Apr;81:74-82. doi: 10.1016/j.dci.2017.11.010. Epub 2017 Nov 15.
Notch signaling pathway was originally discovered in the development stage of drosophila but has recently been found to play essential roles in innate immunity. Most previous studies on Notch have focused on mammals, whereas, in this study, we employed the shrimp Litopenaeus vannamei as a model to study the functions of Notch in invertebrate innate immune system. Our results showed that LvNotch was highly expressed in hemocytes and could be strongly induced by lipopolysaccharides (LPS) injection. Small interfering RNA (siRNA)-mediated knockdown of LvNotch could significantly increase LPS induced L. vannamei mortality, which might be due to the fact that LPS induced ROS was greatly enhanced in LvNotch knockdown shrimps. Further, quantitative polymerase chain reaction (qPCR) analysis revealed that LvNotch could affect the expression of multiple genes, including dorsal, relish, anti-lipopolysaccharide factor 1 (ALF1), ALF3 and NADH dehydrogenases which were upregulated, and Hypoxia-inducible factor (HIF, α/β) which were downregulated in LPS treated shrimps. In summary, LvNotch is important in the control of inflammation-induced ROS production in shrimp.