Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, United States.
Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, United States.
Free Radic Biol Med. 2018 Feb 1;115:57-67. doi: 10.1016/j.freeradbiomed.2017.11.012. Epub 2017 Nov 15.
High density lipoprotein (HDL) is cardioprotective, unless it is pathologically modified under oxidative stress. Covalent modifications of lipid-free apoA-I, the most abundant apoprotein in HDL, compromise its atheroprotective functions. HDL is enriched in oxidized phospholipids (oxPL) in vivo in oxidative stress. Furthermore, oxidized phospholipids can covalently modify HDL apoproteins. We have now carried out a systematic analysis of modifications of HDL apoproteins by endogenous oxPL. Human HDL or plasma were oxidized using a physiologically relevant MPO-HO-NO system or AIPH, or were exposed to synthetic oxPL. Protein adduction by oxPL was assessed using LC-MS/MS and MALDI-TOF MS. The pattern of HDL apoprotein modification by oxPL was independent of the oxidation systems used. ApoA-I and apoA-II were the major modification targets. OxPL with a γ-hydroxy (or oxo)-alkenal were mostly responsible for modifications, and the Michael adduct was the most abundant adduct. Histidines and lysines in helices 5-8 of apoA-I were highly susceptible to oxPL modifications, while lysines in helices 1, 2, 4 and 10 were resistant to modification by oxPL. In plasma exposed to oxidation or synthetic oxPL, oxPL modification was highly selective, and four histidines (H155, H162, H193 and H199) in helices 6-8 of apoA-I were the main modification target. H710 and H3613 in apoB-100 of LDL and K190 of human serum albumin were also modified by oxPL but to a lesser extent. Comparison of oxPL with short chain aldehyde HNE using MALDI-TOF MS demonstrated high selectivity and efficiency of oxPL in the modification of HDL apoproteins. These findings provide a novel insight into a potential mechanism of the loss of atheroprotective function of HDL in conditions of oxidative stress.
高密度脂蛋白(HDL)具有心脏保护作用,除非它在氧化应激下发生病理性修饰。无脂载脂蛋白 A-I(HDL 中含量最丰富的载脂蛋白)的共价修饰会损害其抗动脉粥样硬化功能。HDL 在氧化应激状态下富含氧化磷脂(oxPL)。此外,氧化磷脂可以共价修饰 HDL 载脂蛋白。我们现在对 HDL 载脂蛋白的内源性 oxPL 修饰进行了系统分析。用人髓过氧化物酶-过氧化氢-一氧化氮(MPO-HO-NO)系统或 AIPH 氧化人 HDL 或血浆,或用合成 oxPL 处理。采用 LC-MS/MS 和 MALDI-TOF MS 评估 oxPL 对蛋白质的加合作用。oxPL 对 HDL 载脂蛋白的修饰模式与所用的氧化系统无关。ApoA-I 和 apoA-II 是主要的修饰靶标。具有γ-羟基(或氧代)烯醛的 oxPL 主要负责修饰,Michael 加合物是最丰富的加合物。apoA-I 螺旋 5-8 中的组氨酸和赖氨酸高度易受 oxPL 修饰,而螺旋 1、2、4 和 10 中的赖氨酸不易受 oxPL 修饰。在暴露于氧化或合成 oxPL 的血浆中,oxPL 修饰具有高度选择性,apoA-I 螺旋 6-8 中的四个组氨酸(H155、H162、H193 和 H199)是主要的修饰靶标。LDL 载脂蛋白 B-100 中的 H710 和 H3613 以及人血清白蛋白中的 K190 也被 oxPL 修饰,但修饰程度较小。用 MALDI-TOF MS 比较 oxPL 与短链醛 HNE 表明,oxPL 对 HDL 载脂蛋白的修饰具有高度的选择性和效率。这些发现为氧化应激条件下 HDL 抗动脉粥样硬化功能丧失的潜在机制提供了新的认识。