Bustos Fernando J, Ampuero Estibaliz, Jury Nur, Aguilar Rodrigo, Falahi Fahimeh, Toledo Jorge, Ahumada Juan, Lata Jaclyn, Cubillos Paula, Henríquez Berta, Guerra Miguel V, Stehberg Jimmy, Neve Rachael L, Inestrosa Nibaldo C, Wyneken Ursula, Fuenzalida Marco, Härtel Steffen, Sena-Esteves Miguel, Varela-Nallar Lorena, Rots Marianne G, Montecino Martin, van Zundert Brigitte
Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Avenida Republica 217, Santiago, Chile.
FONDAP Center for Genome Regulation, Chile.
Brain. 2017 Dec 1;140(12):3252-3268. doi: 10.1093/brain/awx272.
The Dlg4 gene encodes for post-synaptic density protein 95 (PSD95), a major synaptic protein that clusters glutamate receptors and is critical for plasticity. PSD95 levels are diminished in ageing and neurodegenerative disorders, including Alzheimer's disease and Huntington's disease. The epigenetic mechanisms that (dys)regulate transcription of Dlg4/PSD95, or other plasticity genes, are largely unknown, limiting the development of targeted epigenome therapy. We analysed the Dlg4/PSD95 epigenetic landscape in hippocampal tissue and designed a Dlg4/PSD95 gene-targeting strategy: a Dlg4/PSD95 zinc finger DNA-binding domain was engineered and fused to effector domains to either repress (G9a, Suvdel76, SKD) or activate (VP64) transcription, generating artificial transcription factors or epigenetic editors (methylating H3K9). These epi-editors altered critical histone marks and subsequently Dlg4/PSD95 expression, which, importantly, impacted several hippocampal neuron plasticity processes. Intriguingly, transduction of the artificial transcription factor PSD95-VP64 rescued memory deficits in aged and Alzheimer's disease mice. Conclusively, this work validates PSD95 as a key player in memory and establishes epigenetic editing as a potential therapy to treat human neurological disorders.
Dlg4基因编码突触后致密蛋白95(PSD95),这是一种主要的突触蛋白,可聚集谷氨酸受体,对可塑性至关重要。在衰老和神经退行性疾病(包括阿尔茨海默病和亨廷顿病)中,PSD95水平会降低。(失调)调节Dlg4/PSD95或其他可塑性基因转录的表观遗传机制在很大程度上尚不清楚,这限制了靶向表观基因组治疗的发展。我们分析了海马组织中的Dlg4/PSD95表观遗传格局,并设计了一种Dlg4/PSD95基因靶向策略:构建一个Dlg4/PSD95锌指DNA结合结构域,并与效应结构域融合,以抑制(G9a、Suvdel76、SKD)或激活(VP64)转录,从而产生人工转录因子或表观遗传编辑器(甲基化H3K9)。这些表观遗传编辑器改变了关键的组蛋白标记,随后改变了Dlg4/PSD95的表达,重要的是,这影响了几个海马神经元可塑性过程。有趣的是,人工转录因子PSD95-VP64的转导挽救了老年和阿尔茨海默病小鼠的记忆缺陷。总之,这项工作验证了PSD95是记忆中的关键参与者,并确立了表观遗传编辑作为治疗人类神经系统疾病的潜在疗法。