文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

干旱胁迫下茶树(Camellia sinensis L.)响应miRNA 的鉴定及生理特性分析。

Identification of drought-responsive miRNAs and physiological characterization of tea plant (Camellia sinensis L.) under drought stress.

机构信息

College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.

Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.

出版信息

BMC Plant Biol. 2017 Nov 21;17(1):211. doi: 10.1186/s12870-017-1172-6.


DOI:10.1186/s12870-017-1172-6
PMID:29157225
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC5696764/
Abstract

BACKGROUND: Drought stress is one of the major natural challenges in the main tea-producing regions of China. The tea plant (Camellia sinensis) is a traditional beverage plant whose growth status directly affects tea quality. Recent studies have revealed that microRNAs (miRNAs) play key functions in plant growth and development. Although some miRNAs have been identified in C. sinensis, little is known about their roles in the drought stress response of tea plants. RESULTS: Physiological characterization of Camellia sinensis 'Tieguanyin' under drought stress showed that the malondialdehyde concentration and electrical conductivity of leaves of drought-stressed plants increased when the chlorophyll concentration decreased under severe drought stress. We sequenced four small-RNA (sRNA) libraries constructed from leaves of plants subjected to four different treatments, normal water supply (CK); mild drought stress (T1); moderate drought stress (T2) and severe drought stress (T3). A total of 299 known mature miRNA sequences and 46 novel miRNAs were identified. Gene Ontology enrichment analysis revealed that most of the differentially expressed-miRNA target genes were related to regulation of transcription. Kyoto Encyclopedia of Genes and Genomes analysis revealed that the most highly enriched pathways under drought stress were D-alanine metabolism, sulfur metabolism, and mineral absorption pathways. Real-time quantitative PCR (qPCR) was used to validate the expression patterns of 21 miRNAs (2 up-regulated and 19 down-regulated under drought stress). The observed co-regulation of the miR166 family and their targets ATHB-14-like and ATHB-15-like indicate the presence of negative feedback regulation in miRNA pathways. CONCLUSIONS: Analyses of drought-responsive miRNAs in tea plants showed that most of differentially expressed-miRNA target genes were related to regulation of transcription. The results of study revealed that the expressions of phase-specific miRNAs vary with morphological, physiological, and biochemical changes. These findings will be useful for research on drought resistance and provide insights into the mechanisms of drought adaptation and resistance in C. sinensis.

摘要

背景:干旱胁迫是中国主要产茶区面临的主要自然挑战之一。茶树(Camellia sinensis)是一种传统的饮料植物,其生长状况直接影响茶叶品质。最近的研究表明,microRNAs(miRNAs)在植物生长发育中发挥着关键作用。虽然在茶树中已经鉴定出一些 miRNAs,但它们在茶树干旱胁迫响应中的作用知之甚少。

结果:对干旱胁迫下的茶树‘铁观音’进行生理特性分析表明,在严重干旱胁迫下,叶片叶绿素浓度下降的同时,丙二醛浓度和电导率增加。我们从正常供水(CK)、轻度干旱胁迫(T1)、中度干旱胁迫(T2)和重度干旱胁迫(T3)的茶树叶片中构建了四个小 RNA(sRNA)文库,共鉴定出 299 个已知成熟 miRNA 序列和 46 个新的 miRNA。基因本体论富集分析表明,差异表达-miRNA 靶基因大多与转录调控有关。京都基因与基因组百科全书分析表明,干旱胁迫下最富集的途径是 D-丙氨酸代谢、硫代谢和矿物质吸收途径。实时定量 PCR(qPCR)用于验证 21 个 miRNA(干旱胁迫下 2 个上调和 19 个下调)的表达模式。miR166 家族及其靶基因 ATHB-14-like 和 ATHB-15-like 的共调控表明 miRNA 途径存在负反馈调节。

结论:对茶树干旱响应 miRNAs 的分析表明,大多数差异表达-miRNA 靶基因与转录调控有关。研究结果表明,阶段性特异性 miRNAs 的表达随形态、生理和生化变化而变化。这些发现将有助于研究抗旱性,并为研究茶树的干旱适应和抗性机制提供思路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac87/5696764/58d52db8cdc4/12870_2017_1172_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac87/5696764/98fa8638c2ba/12870_2017_1172_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac87/5696764/3de9989a5a9e/12870_2017_1172_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac87/5696764/3df4d5366a40/12870_2017_1172_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac87/5696764/d3098b642faa/12870_2017_1172_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac87/5696764/1e5968a6efe1/12870_2017_1172_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac87/5696764/d8baf24b230c/12870_2017_1172_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac87/5696764/705d21e11396/12870_2017_1172_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac87/5696764/83873bca0f3b/12870_2017_1172_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac87/5696764/a778695938f9/12870_2017_1172_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac87/5696764/58d52db8cdc4/12870_2017_1172_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac87/5696764/98fa8638c2ba/12870_2017_1172_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac87/5696764/3de9989a5a9e/12870_2017_1172_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac87/5696764/3df4d5366a40/12870_2017_1172_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac87/5696764/d3098b642faa/12870_2017_1172_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac87/5696764/1e5968a6efe1/12870_2017_1172_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac87/5696764/d8baf24b230c/12870_2017_1172_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac87/5696764/705d21e11396/12870_2017_1172_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac87/5696764/83873bca0f3b/12870_2017_1172_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac87/5696764/a778695938f9/12870_2017_1172_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac87/5696764/58d52db8cdc4/12870_2017_1172_Fig10_HTML.jpg

相似文献

[1]
Identification of drought-responsive miRNAs and physiological characterization of tea plant (Camellia sinensis L.) under drought stress.

BMC Plant Biol. 2017-11-21

[2]
Small RNA and degradome profiling reveals important roles for microRNAs and their targets in tea plant response to drought stress.

Physiol Plant. 2016-12

[3]
Genome-wide identification of conserved and novel microRNAs in one bud and two tender leaves of tea plant (Camellia sinensis) by small RNA sequencing, microarray-based hybridization and genome survey scaffold sequences.

BMC Plant Biol. 2017-11-21

[4]
Identification and characterization of cold-responsive microRNAs in tea plant (Camellia sinensis) and their targets using high-throughput sequencing and degradome analysis.

BMC Plant Biol. 2014-10-21

[5]
Genome-wide identification of microRNAs responsive to Ectropis oblique feeding in tea plant (Camellia sinensis L.).

Sci Rep. 2017-10-19

[6]
Proteomic analysis of Camellia sinensis (L.) reveals a synergistic network in the response to drought stress and recovery.

J Plant Physiol. 2017-10-20

[7]
Transcriptome-Wide Identification and Expression Analysis of the NAC Gene Family in Tea Plant [Camellia sinensis (L.) O. Kuntze].

PLoS One. 2016-11-17

[8]
De novo transcriptome and phytochemical analyses reveal differentially expressed genes and characteristic secondary metabolites in the original oolong tea (Camellia sinensis) cultivar 'Tieguanyin' compared with cultivar 'Benshan'.

BMC Genomics. 2019-4-3

[9]
Integrated RNA-Seq and sRNA-Seq Analysis Identifies Chilling and Freezing Responsive Key Molecular Players and Pathways in Tea Plant (Camellia sinensis).

PLoS One. 2015-4-22

[10]
Biochemical and transcriptomic analyses reveal different metabolite biosynthesis profiles among three color and developmental stages in 'Anji Baicha' (Camellia sinensis).

BMC Plant Biol. 2016-9-8

引用本文的文献

[1]
Non-coding RNAs in plant stress responses: molecular insights and agricultural applications.

Plant Biotechnol J. 2025-8

[2]
The Proline Dehydrogenase Gene Regulates Homeostasis of the Pro-P5C Cycle Under Drought Stress in Tea Plants.

Int J Mol Sci. 2025-3-28

[3]
MicroRNA-Mediated Post-Transcriptional Regulation of Enzymes Involved in Herbicide Resistance in (Vasinger) Vasinger.

Plants (Basel). 2025-2-26

[4]
Comprehensive review of mapping climate change impacts on tea cultivation: bibliometric and content analysis of trends, influences, adaptation strategies, and future directions.

Front Plant Sci. 2025-1-24

[5]
Arbuscular mycorrhizal fungi enhance nitrogen assimilation and drought adaptability in tea plants by promoting amino acid accumulation.

Front Plant Sci. 2024-9-16

[6]
Function and regulation of plant ARGONAUTE proteins in response to environmental challenges: a review.

PeerJ. 2024

[7]
Unraveling the regulatory network of miRNA expression in Potato Y virus-infected of using integrated small RNA and transcriptome sequencing.

Front Genet. 2024-1-8

[8]
Identification and Validation of the miR156 Family Involved in Drought Responses and Tolerance in Tea Plants ( (L.) O. Kuntze).

Plants (Basel). 2024-1-11

[9]
An Integrated Analysis of microRNAs and the Transcriptome Reveals the Molecular Mechanisms Underlying the Regulation of Leaf Development in Xinyang Maojian Green Tea ().

Plants (Basel). 2023-10-24

[10]
Functional role of microRNA in the regulation of biotic and abiotic stress in agronomic plants.

Front Genet. 2023-10-10

本文引用的文献

[1]
Identification, Characterization, and Functional Validation of Drought-responsive MicroRNAs in Subtropical Maize Inbreds.

Front Plant Sci. 2017-6-2

[2]
Combined small RNA and degradome sequencing reveals complex microRNA regulation of catechin biosynthesis in tea (Camellia sinensis).

PLoS One. 2017-2-22

[3]
Integrated mRNA and microRNA analysis identifies genes and small miRNA molecules associated with transcriptional and post-transcriptional-level responses to both drought stress and re-watering treatment in tobacco.

BMC Genomics. 2017-1-10

[4]
MicroRNAs As Potential Targets for Abiotic Stress Tolerance in Plants.

Front Plant Sci. 2016-6-14

[5]
Small RNA and degradome profiling reveals important roles for microRNAs and their targets in tea plant response to drought stress.

Physiol Plant. 2016-12

[6]
Sulfur Use Efficiency Is a Significant Determinant of Drought Stress Tolerance in Relation to Photosynthetic Activity in Brassica napus Cultivars.

Front Plant Sci. 2016-4-8

[7]
Combined small RNA and degradome sequencing to identify miRNAs and their targets in response to drought in foxtail millet.

BMC Genet. 2016-4-12

[8]
Transcriptomic Analysis Reveals the Molecular Mechanisms of Drought-Stress-Induced Decreases in Camellia sinensis Leaf Quality.

Front Plant Sci. 2016-3-30

[9]
Transcriptomic Analysis of Tea Plant Responding to Drought Stress and Recovery.

PLoS One. 2016-1-20

[10]
Cs-miR156 is involved in the nitrogen form regulation of catechins accumulation in tea plant (Camellia sinensis L.).

Plant Physiol Biochem. 2015-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索