From the Department of Ophthalmology and Visual Sciences, University of Michigan, Kellogg Eye Center, Ann Arbor, Michigan 48105.
From the Department of Ophthalmology and Visual Sciences, University of Michigan, Kellogg Eye Center, Ann Arbor, Michigan 48105
J Biol Chem. 2018 Jan 12;293(2):717-730. doi: 10.1074/jbc.M117.815381. Epub 2017 Nov 20.
Increased retinal vascular permeability contributes to macular edema, a leading cause of vision loss in eye pathologies such as diabetic retinopathy, age-related macular degeneration, and central retinal vein occlusions. Pathological changes in vascular permeability are driven by growth factors such as VEGF and pro-inflammatory cytokines such as TNF-α. Identifying the pro-barrier mechanisms that block vascular permeability and restore the blood-retinal barrier (BRB) may lead to new therapies. The cAMP-dependent guanine nucleotide exchange factor (EPAC) exchange-protein directly activated by cAMP promotes exchange of GTP in the small GTPase Rap1. Rap1 enhances barrier properties in human umbilical endothelial cells by promoting adherens junction assembly. We hypothesized that the EPAC-Rap1 signaling pathway may regulate the tight junction complex of the BRB and may restore barrier properties after cytokine-induced permeability. Here, we show that stimulating EPAC or Rap1 activation can prevent or reverse VEGF- or TNF-α-induced permeability in cell culture and Moreover, EPAC activation inhibited VEGF receptor (VEGFR) signaling through the Ras/MEK/ERK pathway. We also found that Rap1B knockdown or an EPAC antagonist increases endothelial permeability and that VEGF has no additive effect, suggesting a common pathway. Furthermore, GTP-bound Rap1 promoted tight junction assembly, and loss of Rap1B led to loss of junctional border organization. Collectively, our results indicate that the EPAC-Rap1 pathway helps maintain basal barrier properties in the retinal vascular endothelium and activation of the EPAC-Rap1 pathway may therefore represent a potential therapeutic strategy to restore the BRB.
视网膜血管通透性的增加导致黄斑水肿,这是糖尿病视网膜病变、年龄相关性黄斑变性和视网膜中央静脉阻塞等眼部病变导致视力丧失的主要原因。血管通透性的病理性变化是由 VEGF 等生长因子和 TNF-α 等促炎细胞因子驱动的。确定阻止血管通透性和恢复血视网膜屏障 (BRB) 的促屏障机制可能会导致新的治疗方法。环磷酸腺苷 (cAMP) 依赖性鸟嘌呤核苷酸交换因子 (EPAC) 直接被 cAMP 激活,促进小 GTP 酶 Rap1 中的 GTP 交换。Rap1 通过促进黏附连接组装来增强人脐静脉内皮细胞的屏障特性。我们假设 EPAC-Rap1 信号通路可能调节 BRB 的紧密连接复合物,并在细胞因子诱导的通透性后恢复屏障特性。在这里,我们表明刺激 EPAC 或 Rap1 激活可以防止或逆转细胞培养中 VEGF 或 TNF-α 诱导的通透性。此外,EPAC 激活通过 Ras/MEK/ERK 通路抑制 VEGF 受体 (VEGFR) 信号。我们还发现 Rap1B 敲低或 EPAC 拮抗剂增加了内皮通透性,而 VEGF 没有相加作用,表明存在共同通路。此外,GTP 结合的 Rap1 促进了紧密连接的组装,而 Rap1B 的缺失导致了连接边界组织的丧失。总之,我们的结果表明 EPAC-Rap1 通路有助于维持视网膜血管内皮的基础屏障特性,激活 EPAC-Rap1 通路可能因此代表一种恢复 BRB 的潜在治疗策略。