School of Chemistry and Environment, South China Normal University, Guangzhou 510006, China.
Nanoscale. 2017 Nov 30;9(46):18467-18473. doi: 10.1039/c7nr05654k.
In this paper, MnO nanoboxes coated with poly(3,4-ethylenedioxythiophene) film (denoted as MnO@PEDOT) are investigated as an anode material in lithium-ion batteries. The MnO nanoboxes are developed through the surface chemical oxidation decomposition of MnCO cubes and the subsequent removal of their remaining cores. PEDOT is coated on the surface of MnO nanoboxes via in situ polymerization of 3,4-ethylenedioxythiophene. The charge-discharge tests demonstrate that this special configuration endows the resulting MnO@PEDOT with remarkable electrochemical performances, that is a reversible capacity of 628 mA h g after 850 cycles at a current density of 1000 mA g and a rate capacity of 367 mA h g at 3000 mA g. The results indicate that the nanoboxes provide the paths for Li-ion diffusion, the reaction sites for Li-ion intercalation/deintercalation and the space to buffer the volume change during the charge-discharge process, while the conductive polymer ensures the structural stability and improves the electronic conductive property of MnO.
本文研究了一种涂有聚(3,4-亚乙基二氧噻吩)薄膜的 MnO 纳米盒(表示为 MnO@PEDOT)作为锂离子电池的阳极材料。MnO 纳米盒通过 MnCO 立方体的表面化学氧化分解和随后去除其剩余的核来制备。通过 3,4-亚乙基二氧噻吩的原位聚合在 MnO 纳米盒的表面上涂覆 PEDOT。充放电测试表明,这种特殊的结构赋予了所得的 MnO@PEDOT 显著的电化学性能,即在 1000 mA g 的电流密度下经过 850 次循环后具有 628 mA h g 的可逆容量,在 3000 mA g 的电流密度下具有 367 mA h g 的倍率容量。结果表明,纳米盒提供了锂离子扩散的路径、锂离子嵌入/脱嵌的反应位点以及在充放电过程中缓冲体积变化的空间,而导电聚合物则确保了结构稳定性并提高了 MnO 的电子导电性能。