Suppr超能文献

氧化还原交换诱导聚(3,4-亚乙基二氧噻吩)纳米线中 MnO2 纳米颗粒的富集用于电化学储能。

Redox exchange induced MnO2 nanoparticle enrichment in poly(3,4-ethylenedioxythiophene) nanowires for electrochemical energy storage.

机构信息

Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA.

出版信息

ACS Nano. 2010 Jul 27;4(7):4299-307. doi: 10.1021/nn1010182.

Abstract

MnO2 nanoparticle enriched poly(3,4-ethylenedioxythiophene) (PEDOT) nanowires are fabricated by simply soaking the PEDOT nanowires in potassium permanganate (KMnO4) solution. The structures of these MnO2 nanoparticle enriched PEDOT nanowires are characterized by SEM and TEM, which show that the MnO2 nanoparticles have uniform sizes and are finely dispersed in the PEDOT matrix. The chemical constituents and bonding of these composite nanowires are characterized by energy-dispersive X-ray analysis, X-ray photoelectron spectroscopy, and infrared spectroscopy, which indicate that the formation and dispersion of these MnO2 nanoparticles into the nanoscale pores of the PEDOT nanowires are most likely triggered by the reduction of KMnO4 via the redox exchange of permanganate ions with the functional group on PEDOT. Varying the concentrations of KMnO4 and the reaction time controls the loading amount and size of the MnO2 nanoparticles. Cyclic voltammetry and galvanostatic charge-discharge are used to characterize the electrochemical properties of these MnO2 nanoparticle loaded PEDOT nanowires. Due to their extremely high exposed surface area with nanosizes, the pristine MnO2 nanoparticles in these MnO2 nanoparticle enriched PEDOT nanowires show very high specific capacitance (410 F/g) as the supercapacitor electrode materials as well as high Li+ storage capacity (300 mAh/g) as cathode materials of Li ion battery, which boost the energy storage capacity of PEDOT nanowires to 4 times without causing excessive volume expansion in the polymer. The highly conductive and porous PEDOT matrix facilitates fast charge/discharge of the MnO2 nanoparticles and prevents them from agglomerating. These synergic properties enable the MnO2 nanoparticle enriched PEDOT nanowires to be promising electrode materials for supercapacitors and lithium ion batteries.

摘要

MnO2 纳米颗粒富集的聚(3,4-亚乙基二氧噻吩)(PEDOT)纳米线是通过将 PEDOT 纳米线简单地浸泡在高锰酸钾(KMnO4)溶液中制备的。这些 MnO2 纳米颗粒富集的 PEDOT 纳米线的结构通过扫描电子显微镜(SEM)和透射电子显微镜(TEM)进行了表征,结果表明 MnO2 纳米颗粒具有均匀的尺寸,并在 PEDOT 基体中精细分散。这些复合纳米线的化学组成和键合通过能量色散 X 射线分析(EDAX)、X 射线光电子能谱(XPS)和红外光谱(FTIR)进行了表征,结果表明这些 MnO2 纳米颗粒在纳米尺度孔中的形成和分散最有可能是通过高锰酸钾(KMnO4)的还原触发的,其中锰酸盐离子与 PEDOT 上的官能团发生氧化还原交换。改变 KMnO4 的浓度和反应时间可以控制 MnO2 纳米颗粒的负载量和尺寸。循环伏安法和恒电流充放电用于表征这些 MnO2 纳米颗粒负载的 PEDOT 纳米线的电化学性能。由于其具有纳米尺寸的极高暴露表面积,这些 MnO2 纳米颗粒富集的 PEDOT 纳米线中的原始 MnO2 纳米颗粒作为超级电容器电极材料表现出非常高的比电容(410 F/g)以及作为锂离子电池阴极材料的高 Li+存储容量(300 mAh/g),这将 PEDOT 纳米线的储能能力提高了 4 倍,而不会导致聚合物过度膨胀。高导电性和多孔的 PEDOT 基体促进了 MnO2 纳米颗粒的快速充放电,并防止它们聚集。这些协同性质使 MnO2 纳米颗粒富集的 PEDOT 纳米线成为超级电容器和锂离子电池有前途的电极材料。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验