Department of Chemistry, University of California-Riverside , Riverside, California 92521-0403, United States.
Department of Chemistry, North Carolina State University , Raleigh, North Carolina 27695-8204, United States.
J Am Chem Soc. 2017 Dec 6;139(48):17547-17564. doi: 10.1021/jacs.7b09548. Epub 2017 Nov 21.
Three sets of tetrapyrrole-chromophore arrays have been examined that exhibit panchromatic absorption across large portions of the near-ultraviolet (NUV) to near-infrared (NIR) spectrum along with favorable excited-state properties for use in solar-energy conversion. The arrays vary the tetrapyrrole (porphyrin, chlorin, bacteriochlorin), chromophore (boron-dipyrrin, perylene, terrylene), and attachment sites (meso-position, β-pyrrole position). In all, seven dyads, one triad, and nine benchmarks in toluene and benzonitrile were studied using steady-state and time-resolved absorption and fluorescence spectroscopy. The results were analyzed with the aid of density functional theory (DFT) and time-dependent DFT calculations. Natural transition orbitals (NTOs) were constructed to assess the net change in electron density associated with each NUV-NIR absorption transition. The porphyrin-perylene dyad P-PMI displays the most even spectral coverage from 400 to 700 nm, with an average ε ∼ 43 000 M cm. A significant contributor is a chromophore-induced reduction in the configuration interaction involving the four frontier molecular orbitals of benchmark porphyrins and associated constructive/destructive transition-dipole interference that results in intense (ε ∼ 400 000 M cm) NUV and weak (<20 000 M cm) visible features. P-PMI has an S lifetime (τ) of 4.7 ns in toluene and 1.3 ns in benzonitrile. Bacteriochlorin analogue BC-PMI has more extended spectral coverage (350-750 nm) and τ = 2.8 ns in toluene and 30 ps in benzonitrile. Terrylene analogue P-TMI has intermediate optical characteristics with τ = 310 ps in toluene and 150 ps in benzonitrile. The NTOs for most arrays show that S → S primarily involves the tetrapyrrole, but for P-TMI the NTOs have electron density delocalized over the two units as a result of extensive orbital mixing. Collectively, the insights obtained should aid the design of tetrapyrrole-based architectures for panchromatic light-harvesting systems for solar-energy conversion.
已经研究了三组四吡咯-发色团阵列,它们在近紫外 (NUV) 到近红外 (NIR) 光谱的大部分区域表现出全色吸收,并且具有用于太阳能转换的有利激发态性质。这些阵列改变了四吡咯(卟啉、叶绿素、细菌叶绿素)、发色团(硼二吡咯、苝、均三苯)和附着位点(meso 位、β-吡咯位)。总共在甲苯和苯腈中研究了七种二聚体、一种三聚体和九个基准化合物,使用稳态和时间分辨吸收和荧光光谱法。结果借助密度泛函理论 (DFT) 和时间相关 DFT 计算进行了分析。构建了自然跃迁轨道 (NTO) 以评估与每个 NUV-NIR 吸收跃迁相关的电子密度的净变化。卟啉-苝二聚体 P-PMI 在 400 至 700nm 之间显示出最均匀的光谱覆盖范围,平均 ε∼43000Mcm。一个重要的贡献是发色团诱导的前四个分子轨道的构象相互作用减少,以及相关的建设性/破坏性跃迁偶极干涉,导致强烈的 (ε∼400000Mcm) NUV 和较弱的(<20000Mcm)可见光特征。P-PMI 在甲苯中的 S 寿命 (τ) 为 4.7ns,在苯腈中的为 1.3ns。细菌叶绿素类似物 BC-PMI 的光谱覆盖范围更广 (350-750nm),在甲苯中的 τ 为 2.8ns,在苯腈中的为 30ps。均三苯类似物 P-TMI 的光学性质介于两者之间,在甲苯中的 τ 为 310ps,在苯腈中的为 150ps。大多数阵列的 NTO 表明 S→S 主要涉及四吡咯,但对于 P-TMI,NTO 具有电子密度在两个单元上离域,这是由于轨道混合广泛。总的来说,获得的见解应该有助于设计基于四吡咯的架构,用于太阳能转换的全色光捕获系统。