Suppr超能文献

超抗污聚(N-丙烯酰基甘氨酰胺)刷的合成与表征。

Synthesis and Characterization of Ultralow Fouling Poly(N-acryloyl-glycinamide) Brushes.

机构信息

Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Science and Chemistry, Hunan University of Technology , Zhuzhou 412007, P. R. China.

Department of Chemical & Biomolecular Engineering, The University of Akron , Akron, Ohio 44325, United States.

出版信息

Langmuir. 2017 Dec 12;33(49):13964-13972. doi: 10.1021/acs.langmuir.7b03435. Epub 2017 Dec 1.

Abstract

The rational design of biomaterials with antifouling properties still remains a challenge, although this is important for many bench-to-bedside applications for biomedical implants, drug delivery carriers, and marine coatings. Herein, we synthesized and characterized poly(N-acryloylglycinamide) (polyNAGA) and then grafted poly(NAGA) onto Au substrate to form polymer brushes with well-controlled film stability, wettability, and thickness using surface-initiated atom transfer radical polymerization (SI-ATRP). The NAGA monomer integrates two hydrophilic amides on the side chain to enhance surface hydration, which is thought as a critical contributor to its antifouling property. The antifouling performances of poly(NAGA) brushes of different film thicknesses were then rigorously assessed and compared using protein adsorption assay from undiluted blood serum and plasma, cell-adhesive assay, and bacterial assay. The resulting poly(NAGA) brushes with a film thickness of 25-35 nm exhibited excellent in vitro antifouling ability to prevent unwanted protein adsorption (<0.3 ng/cm) and bacterial and cell attachments up to 3 days. Molecular dynamics (MD) simulations further showed that two hydrophilic amide groups can interact with water molecules strongly to form a strong hydration layer via coordinated hydrogen bonds. This confirms a positive correlation between antifouling property and surface hydration. In line with a series of polyacrylamides and polyacrylates as antifouling materials synthesized in our lab, we propose that small structural changes in the pendent groups of polymers could largely improve the antifouling capacity, which may be used as a general design rule for developing next-generation antifouling materials.

摘要

尽管对于许多从实验室到临床的生物医学植入物、药物输送载体和海洋涂料应用来说,具有抗污性能的生物材料的合理设计仍然是一个挑战,但我们在此合成并表征了聚(N-丙烯酰基甘氨酸酰胺)(polyNAGA),然后使用表面引发原子转移自由基聚合(SI-ATRP)将 polyNAGA 接枝到 Au 基底上,形成具有良好控制的薄膜稳定性、润湿性和厚度的聚合物刷。NAGA 单体在侧链上集成了两个亲水性酰胺,以增强表面水合作用,这被认为是其抗污性能的关键贡献者。然后使用未稀释的血清和血浆中的蛋白质吸附测定、细胞粘附测定和细菌测定,严格评估和比较了不同薄膜厚度的 polyNAGA 刷的抗污性能。结果表明,厚度为 25-35nm 的 polyNAGA 刷具有出色的体外抗污能力,可防止不必要的蛋白质吸附(<0.3ng/cm)和细菌及细胞附着长达 3 天。分子动力学(MD)模拟进一步表明,两个亲水性酰胺基团可以通过配位氢键与水分子强烈相互作用,形成强水合层。这证实了抗污性能与表面水合作用之间存在正相关关系。与我们实验室合成的一系列聚丙烯酰胺和聚丙烯酸作为抗污材料一致,我们提出聚合物侧基的微小结构变化可以大大提高抗污能力,这可能成为开发下一代抗污材料的一般设计规则。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验