Department of Civil and Environmental Engineering, University of California, Berkeley , Berkeley, California 94720, United States.
The Molecular Foundry, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States.
Nano Lett. 2017 Dec 13;17(12):7289-7298. doi: 10.1021/acs.nanolett.7b02804. Epub 2017 Dec 4.
Membranes made of layer-stacked two-dimensional molybdenum disulfide (MoS) nanosheets have recently shown great promise for water filtration. At present, the reported water fluxes vary significantly, while the accountable structure and properties of MoS nanochannels are largely unknown. This paper aims to mechanistically relate the performance of MoS membranes to the size of their nanochannels in different hydration states. We discovered that fully hydrated MoS membranes retained a 1.2 nm interlayer spacing (or 0.9 nm free spacing), leading to high water permeability and moderate-to-high ionic and molecular rejection. In comparison, completely dry MoS membranes had a 0.62 nm interlayer spacing (or 0.3 nm free spacing) due to irreversible nanosheet restacking and were almost impermeable to water. Furthermore, we revealed that the interlayer spacing of MoS membranes in aqueous solution is maintained by comparable van der Waals and hydration forces, thereby ensuring the aqueous stability of MoS membranes without the need of cross-linking. In addition, we attributed the high water flux (30-250 L m h bar) of MoS membranes to the low hydraulic resistance of smooth, rigid MoS nanochannels. We also concluded that compaction of MoS membranes with a high pressure helps create a more neatly stacked nanostructure with minimum voids or looseness, leading to stable water flux and separation performance. Besides, this paper systematically compares MoS membranes with the widely studied graphene oxide membranes to highlight the uniqueness and advantages of MoS membranes for water-filtration applications.
层状二维二硫化钼 (MoS) 纳米片制成的膜在水过滤方面最近显示出巨大的潜力。目前,报道的水通量差异很大,而 MoS 纳米通道的可解释结构和性能在很大程度上尚不清楚。本文旨在从机械角度将 MoS 膜的性能与其在不同水合状态下的纳米通道尺寸联系起来。我们发现,完全水合的 MoS 膜保留了 1.2nm 的层间距(或 0.9nm 的自由间距),从而具有较高的水透过率和中等至高的离子和分子截留率。相比之下,由于不可逆的纳米片堆积,完全干燥的 MoS 膜的层间距为 0.62nm(或 0.3nm 的自由间距),几乎不透水。此外,我们揭示了 MoS 膜在水溶液中的层间距是由相当的范德华力和水合力维持的,从而确保了 MoS 膜的水稳定性,而无需交联。此外,我们将 MoS 膜的高通量(30-250L m h bar)归因于光滑、刚性的 MoS 纳米通道的低水力阻力。我们还得出结论,高压压缩 MoS 膜有助于形成更整齐堆叠的纳米结构,最小化空隙或松动,从而实现稳定的水通量和分离性能。此外,本文系统地比较了 MoS 膜和广泛研究的氧化石墨烯膜,以突出 MoS 膜在水过滤应用中的独特性和优势。