Wang Mingzhan, Xiong Qinsi, Yue Xiaolin, Yan Gangbin, Han Yu, Lyu Zhiheng, Li Zhen, Sun Leeann, Hoenig Eli, Xu Kangli, Lewis Nicholas H C, Merz Kenneth M, Chen Qian, Schatz George C, Liu Chong
Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA.
Department of Materials Science and Engineering & Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Hong Kong, China.
Nat Commun. 2025 Jul 1;16(1):5854. doi: 10.1038/s41467-025-61307-x.
Significant success has been achieved in fabricating angstrom-scale artificial solid ionic channels aiming to replicate the biological ion channels (BICs). Besides high selectivity, BICs also exhibit sophisticated ion gating and interplay. However, such behavior and functionality are seldomly recreated in the artificial counterparts due to the insufficient understanding of the molecular origin. Here we report cooperative and inhibitory ion transport in angstrom-scale acetate functionalized MoS two-dimensional channels. For cooperative ion transport, the permeability of K is doubled in the presence of only 1% Pb (versus K by molarity), while the permeability of Pb is independent of K. Molecular dynamics simulations reveal complex interplay among K, Pb, and the anions in governing the cooperativity, such that Pb ions capture and slow down the anions via long-range interaction, which leads to the synchronization of anions with K to transport as ion pairs with reduced interaction with the channel surface. For inhibitory ion transport, divalent Co (or Ba) and Pb can replace each other in the confined channel and compete for the limited transport cross section. Our work reveals ion transport phenomena in extreme confinement and highlights the potential of manipulating ion interplay in confinement for achieving advanced functionalities.
在制造旨在复制生物离子通道(BICs)的埃级人工固体离子通道方面已取得了显著成功。除了高选择性外,生物离子通道还表现出复杂的离子门控和相互作用。然而,由于对分子起源的理解不足,这种行为和功能在人工对应物中很少被重现。在此,我们报道了埃级醋酸盐功能化的MoS二维通道中的协同和抑制性离子传输。对于协同离子传输,在仅存在1%的Pb(相对于按摩尔浓度计的K)时,K的渗透率增加了一倍,而Pb的渗透率与K无关。分子动力学模拟揭示了K、Pb和阴离子之间在控制协同性方面的复杂相互作用,即Pb离子通过长程相互作用捕获并减缓阴离子,这导致阴离子与K同步,以离子对的形式传输,与通道表面的相互作用减少。对于抑制性离子传输,二价Co(或Ba)和Pb可以在受限通道中相互取代,并竞争有限的传输横截面。我们的工作揭示了极端受限条件下的离子传输现象,并突出了在受限条件下操纵离子相互作用以实现先进功能的潜力。