Suppr超能文献

从灵长类动物AIT神经元到DNN神经元对图像对象刺激的视觉反应统计。

Statistics of Visual Responses to Image Object Stimuli from Primate AIT Neurons to DNN Neurons.

作者信息

Dong Qiulei, Wang Hong, Hu Zhanyi

机构信息

National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China; and CAS Center for Excellence in Brain Science and Intelligence Technology, Beijing 100190, China

University of Chinese Academy of Sciences, Beijing 100049, China

出版信息

Neural Comput. 2018 Feb;30(2):447-476. doi: 10.1162/neco_a_01039. Epub 2017 Nov 21.

Abstract

Under the goal-driven paradigm, Yamins et al. ( 2014 ; Yamins & DiCarlo, 2016 ) have shown that by optimizing only the final eight-way categorization performance of a four-layer hierarchical network, not only can its top output layer quantitatively predict IT neuron responses but its penultimate layer can also automatically predict V4 neuron responses. Currently, deep neural networks (DNNs) in the field of computer vision have reached image object categorization performance comparable to that of human beings on ImageNet, a data set that contains 1.3 million training images of 1000 categories. We explore whether the DNN neurons (units in DNNs) possess image object representational statistics similar to monkey IT neurons, particularly when the network becomes deeper and the number of image categories becomes larger, using VGG19, a typical and widely used deep network of 19 layers in the computer vision field. Following Lehky, Kiani, Esteky, and Tanaka ( 2011 , 2014 ), where the response statistics of 674 IT neurons to 806 image stimuli are analyzed using three measures (kurtosis, Pareto tail index, and intrinsic dimensionality), we investigate the three issues in this letter using the same three measures: (1) the similarities and differences of the neural response statistics between VGG19 and primate IT cortex, (2) the variation trends of the response statistics of VGG19 neurons at different layers from low to high, and (3) the variation trends of the response statistics of VGG19 neurons when the numbers of stimuli and neurons increase. We find that the response statistics on both single-neuron selectivity and population sparseness of VGG19 neurons are fundamentally different from those of IT neurons in most cases; by increasing the number of neurons in different layers and the number of stimuli, the response statistics of neurons at different layers from low to high do not substantially change; and the estimated intrinsic dimensionality values at the low convolutional layers of VGG19 are considerably larger than the value of approximately 100 reported for IT neurons in Lehky et al. ( 2014 ), whereas those at the high fully connected layers are close to or lower than 100. To the best of our knowledge, this work is the first attempt to analyze the response statistics of DNN neurons with respect to primate IT neurons in image object representation.

摘要

在目标驱动范式下,亚明斯等人(2014年;亚明斯和迪卡洛,2016年)已经表明,通过仅优化四层层次网络的最终八路分类性能,不仅其顶层输出层能够定量预测IT神经元的反应,其倒数第二层也能够自动预测V4神经元的反应。目前,计算机视觉领域的深度神经网络(DNN)在ImageNet数据集上已经达到了与人类相当的图像目标分类性能,该数据集包含1000个类别的130万张训练图像。我们使用VGG19(计算机视觉领域一个典型且广泛使用的19层深度网络)来探究DNN神经元(DNN中的单元)是否具有与猴子IT神经元相似的图像目标表征统计特性,特别是当网络变得更深且图像类别数量增加时。继莱基、基亚尼、埃斯泰基和田中(2011年,2014年)之后,他们使用三种度量(峰度、帕累托尾指数和内在维度)分析了674个IT神经元对806个图像刺激的反应统计特性,我们在这封信中使用相同的三种度量来研究三个问题:(1)VGG19与灵长类动物IT皮层之间神经反应统计特性的异同,(2)VGG19神经元从低到高不同层的反应统计特性的变化趋势,以及(3)当刺激数量和神经元数量增加时VGG19神经元的反应统计特性的变化趋势。我们发现,在大多数情况下,VGG19神经元在单神经元选择性和群体稀疏性方面的反应统计特性与IT神经元的根本不同;通过增加不同层的神经元数量和刺激数量,从低到高不同层的神经元的反应统计特性没有实质性变化;并且VGG19低卷积层的估计内在维度值比莱基等人(2014年)报道的IT神经元的约100的值大得多,而高全连接层的那些值接近或低于100。据我们所知,这项工作是首次尝试在图像目标表征方面分析DNN神经元相对于灵长类动物IT神经元的反应统计特性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验