Suppr超能文献

灵长类下颞叶皮层对物体刺激的视觉反应的统计。

Statistics of visual responses in primate inferotemporal cortex to object stimuli.

机构信息

Cognitive Brain Mapping Laboratory, RIKEN Brain Science Inst., Hirosawa 2-1, Wako-shi, Saitama 351-0198, Japan.

出版信息

J Neurophysiol. 2011 Sep;106(3):1097-117. doi: 10.1152/jn.00990.2010. Epub 2011 May 11.

Abstract

We have characterized selectivity and sparseness in anterior inferotemporal cortex, using a large data set. Responses were collected from 674 monkey inferotemporal cells, each stimulated by 806 object photographs. This 806 × 674 matrix was examined in two ways: columnwise, looking at responses of a single neuron to all images (single-neuron selectivity), and rowwise, looking at the responses of all neurons caused by a single image (population sparseness). Selectivity and sparseness were measured as kurtosis of probability distributions. Population sparseness exceeded single-neuron selectivity, with specific values dependent on the size of the data sample. This difference was principally caused by inclusion, within the population, of neurons with a variety of dynamic ranges (standard deviations of responses over all images). Statistics of large responses were examined by quantifying how quickly the upper tail of the probability distribution decreased (tail heaviness). This analysis demonstrated that population responses had heavier tails than single-neuron responses, consistent with the difference between sparseness and selectivity measurements. Population responses with spontaneous activity subtracted had the heaviest tails, following a power law. The very light tails of single-neuron responses indicate that the critical feature for each neuron is simple enough to have a high probability of occurring within a limited stimulus set. Heavy tails of population responses indicate that there are a large number of different critical features to which different neurons are tuned. These results are inconsistent with some structural models of object recognition that posit that objects are decomposed into a small number of standard features.

摘要

我们使用大量数据集对前颞下皮质的选择性和稀疏性进行了特征描述。通过 806 张物体照片对 674 只猴子的颞下皮质细胞进行了刺激,从而收集到了反应。我们以两种方式检查了这个 806×674 的矩阵:列向,观察单个神经元对所有图像的反应(单神经元选择性);行向,观察单个图像引起的所有神经元的反应(种群稀疏性)。通过概率分布的峰度来测量选择性和稀疏性。种群稀疏性超过了单神经元选择性,具体数值取决于数据样本的大小。这种差异主要是由于在种群中包含了具有各种动态范围(所有图像中反应的标准偏差)的神经元。通过量化概率分布的上尾下降速度(尾部沉重程度),研究了大响应的统计数据。这种分析表明,种群响应的尾部比单神经元响应更重,这与稀疏性和选择性测量的差异一致。减去自发活动的种群响应具有最重的尾部,遵循幂律。单神经元响应的极轻尾部表明,对于每个神经元来说,关键特征简单到足以在有限的刺激集中具有很高的发生概率。种群响应的重尾部表明,存在大量不同的关键特征,不同的神经元对这些特征进行了调整。这些结果与某些物体识别的结构模型不一致,这些模型假设物体被分解为少数标准特征。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验