Suppr超能文献

一系列新型的烯酰还原酶抑制剂,靶向ESKAPE病原体、金黄色葡萄球菌和鲍曼不动杆菌。

A novel series of enoyl reductase inhibitors targeting the ESKAPE pathogens, Staphylococcus aureus and Acinetobacter baumannii.

作者信息

Kwon Jieun, Mistry Tina, Ren Jinhong, Johnson Michael E, Mehboob Shahila

机构信息

Novalex Therapeutics, 2242 W. Harrison, Chicago, IL 60612, United States.

Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL 60607, United States.

出版信息

Bioorg Med Chem. 2018 Jan 1;26(1):65-76. doi: 10.1016/j.bmc.2017.11.018. Epub 2017 Nov 11.

Abstract

S. aureus and A. baumannii are among the ESKAPE pathogens that are increasingly difficult to treat due to the rise in the number of drug resistant strains. Novel therapeutics targeting these pathogens are much needed. The bacterial enoyl reductase (FabI) is as potentially significant drug target for developing pathogen-specific antibiotics due to the presence of alternate FabI isoforms in many other bacterial species. We report the identification and development of a novel N-carboxy pyrrolidine scaffold targeting FabI in S. aureus and A. baumannii, two pathogens for which FabI essentiality has been established. This scaffold is unrelated to other known antibiotic families, and FabI is not targeted by any currently approved antibiotic. Our data shows that this scaffold displays promising enzyme inhibitory activity against FabI from both S. aureus and A. baumannii, as well as encouraging antibacterial activity in S. aureus. Compounds also display excellent synergy when combined with colistin and tested against A. baumannii. In this combination the MIC of colistin is reduced by 10-fold. Our first generation compound displays promising enzyme inhibition, targets FabI in S. aureus with a favorable selectivity index (ratio of cytotoxicity to MIC), and has excellent synergy with colistin against A. baumannii, including a multidrug resistant strain.

摘要

金黄色葡萄球菌和鲍曼不动杆菌属于ESKAPE病原体,由于耐药菌株数量的增加,它们越来越难以治疗。因此,非常需要针对这些病原体的新型疗法。由于许多其他细菌物种中存在替代的FabI同工型,细菌烯酰还原酶(FabI)作为开发病原体特异性抗生素的潜在重要药物靶点。我们报告了一种新型N-羧基吡咯烷支架的鉴定和开发,该支架靶向金黄色葡萄球菌和鲍曼不动杆菌中的FabI,这两种病原体的FabI必需性已经确定。这种支架与其他已知抗生素家族无关,并且FabI未被任何目前批准的抗生素靶向。我们的数据表明,这种支架对金黄色葡萄球菌和鲍曼不动杆菌的FabI均显示出有前景的酶抑制活性,以及在金黄色葡萄球菌中令人鼓舞的抗菌活性。当与黏菌素联合使用并针对鲍曼不动杆菌进行测试时,化合物还显示出优异的协同作用。在这种组合中,黏菌素的MIC降低了10倍。我们的第一代化合物显示出有前景的酶抑制作用,以良好的选择性指数(细胞毒性与MIC的比率)靶向金黄色葡萄球菌中的FabI,并且与黏菌素对鲍曼不动杆菌(包括多重耐药菌株)具有优异的协同作用。

相似文献

1
A novel series of enoyl reductase inhibitors targeting the ESKAPE pathogens, Staphylococcus aureus and Acinetobacter baumannii.
Bioorg Med Chem. 2018 Jan 1;26(1):65-76. doi: 10.1016/j.bmc.2017.11.018. Epub 2017 Nov 11.
3
Discovery of a potent enoyl-acyl carrier protein reductase (FabI) inhibitor suitable for antistaphylococcal agent.
Bioorg Med Chem Lett. 2015 Oct 15;25(20):4481-6. doi: 10.1016/j.bmcl.2015.08.077. Epub 2015 Sep 3.
4
Benzimidazole-Based FabI Inhibitors: A Promising Novel Scaffold for Anti-staphylococcal Drug Development.
ACS Infect Dis. 2017 Jan 13;3(1):54-61. doi: 10.1021/acsinfecdis.6b00123. Epub 2016 Oct 27.
6
Structural and biological evaluation of a novel series of benzimidazole inhibitors of Francisella tularensis enoyl-ACP reductase (FabI).
Bioorg Med Chem Lett. 2015 Mar 15;25(6):1292-6. doi: 10.1016/j.bmcl.2015.01.048. Epub 2015 Jan 29.
8
Virtual screening of antibacterial compounds by similarity search of Enoyl-ACP reductase (FabI) inhibitors.
Future Med Chem. 2020 Jan;12(1):51-68. doi: 10.4155/fmc-2019-0158. Epub 2019 Nov 15.
9
Spiro-naphthyridinone piperidines as inhibitors of S. aureus and E. coli enoyl-ACP reductase (FabI).
Bioorg Med Chem Lett. 2009 Sep 15;19(18):5355-8. doi: 10.1016/j.bmcl.2009.07.129. Epub 2009 Aug 6.

引用本文的文献

3
Acinetobacter baumannii: A multidrug-resistant pathogen, has emerged in Saudi Arabia.
Saudi Med J. 2023 Aug;44(8):732-744. doi: 10.15537/smj.2023.44.8.20230194.
4
Aromatic hydrazides: A potential solution for Acinetobacter baumannii infections.
Eur J Med Chem. 2023 Mar 5;249:115165. doi: 10.1016/j.ejmech.2023.115165. Epub 2023 Jan 30.
5
Promising Vaccine Candidates and Drug Targets in Recent Years.
Front Immunol. 2022 May 26;13:900509. doi: 10.3389/fimmu.2022.900509. eCollection 2022.
6
Insights into Acinetobacter baumannii fatty acid synthesis 3-oxoacyl-ACP reductases.
Sci Rep. 2021 Mar 29;11(1):7050. doi: 10.1038/s41598-021-86400-1.
7
Structural approaches to pathway-specific antimicrobial agents.
Transl Res. 2020 Jun;220:114-121. doi: 10.1016/j.trsl.2020.02.001. Epub 2020 Feb 6.
8
Toward a structome of Acinetobacter baumannii drug targets.
Protein Sci. 2020 Mar;29(3):789-802. doi: 10.1002/pro.3826. Epub 2020 Jan 20.

本文引用的文献

1
Benzimidazole-Based FabI Inhibitors: A Promising Novel Scaffold for Anti-staphylococcal Drug Development.
ACS Infect Dis. 2017 Jan 13;3(1):54-61. doi: 10.1021/acsinfecdis.6b00123. Epub 2016 Oct 27.
2
In silico-based high-throughput screen for discovery of novel combinations for tuberculosis treatment.
Antimicrob Agents Chemother. 2015 Sep;59(9):5664-74. doi: 10.1128/AAC.05148-14. Epub 2015 Jul 6.
3
Impact of daptomycin resistance on Staphylococcus aureus virulence.
Virulence. 2015;6(2):127-31. doi: 10.1080/21505594.2015.1011532.
5
Development of novel antibacterial drugs to combat multiple resistant organisms.
Langenbecks Arch Surg. 2015 Feb;400(2):153-65. doi: 10.1007/s00423-015-1280-4. Epub 2015 Feb 11.
6
Antibiotics: the changing regulatory and pharmaceutical industry paradigm.
J Antimicrob Chemother. 2015 May;70(5):1281-4. doi: 10.1093/jac/dku572. Epub 2015 Jan 28.
7
Molecular mechanisms of antibiotic resistance.
Nat Rev Microbiol. 2015 Jan;13(1):42-51. doi: 10.1038/nrmicro3380. Epub 2014 Dec 1.
9
Bacteriophage therapy: a potential solution for the antibiotic resistance crisis.
J Infect Dev Ctries. 2014 Feb 13;8(2):129-36. doi: 10.3855/jidc.3573.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验