He Chun-Ting, Ye Zi-Ming, Xu Yan-Tong, Zhou Dong-Dong, Zhou Hao-Long, Chen Da, Zhang Jie-Peng, Chen Xiao-Ming
MOE Key Laboratory of Bioinorganic and Synthetic Chemistry , School of Chemistry , Sun Yat-Sen University , Guangzhou 510275 , China . Email:
Chem Sci. 2017 Nov 1;8(11):7560-7565. doi: 10.1039/c7sc03067c. Epub 2017 Sep 11.
The pore size and framework flexibility of hosts are of vital importance for molecular recognition and related applications, but accurate control of these parameters is very challenging. We use the slight difference of metal ion size to achieve continuous hundredth-nanometer pore-size adjustments and drastic flexibility modulations in an ultramicroporous metal-organic framework, giving controllable N adsorption isotherm steps, unprecedented/reversed loading-dependence of H adsorption enthalpy, quadrupole-moment sieving of CH/CO, and an exceptionally high working capacity for CH storage under practical conditions (98 times that of an empty cylinder). single-crystal X-ray diffraction measurements and multilevel computational simulations revealed the importance of pore-surface pockets, which utilize their size and electrostatic potential to smartly recognize the molecular sizes and quadruple moments of gas molecules to control their accessibility to the strongest adsorption sites.
主体的孔径和骨架灵活性对于分子识别及相关应用至关重要,但精确控制这些参数极具挑战性。我们利用金属离子尺寸的细微差异,在一种超微孔金属有机骨架中实现了连续的百分之一纳米级孔径调节和显著的灵活性调制,得到了可控的N吸附等温线步骤、前所未有的/与负载相关的H吸附焓反转、CH/CO的四极矩筛分,以及在实际条件下CH存储的超高工作容量(是空气瓶的98倍)。单晶X射线衍射测量和多级计算模拟揭示了孔表面口袋的重要性,其利用自身尺寸和静电势巧妙地识别气体分子的尺寸和四极矩,以控制它们进入最强吸附位点的可达性。