Suppr超能文献

二项式项目的广义速度-准确性反应模型。

A Generalized Speed-Accuracy Response Model for Dichotomous Items.

机构信息

ETS Global, Amsterdam, The Netherlands.

Educational Testing Service, Princeton, NJ, USA.

出版信息

Psychometrika. 2018 Mar;83(1):109-131. doi: 10.1007/s11336-017-9590-9. Epub 2017 Nov 21.

Abstract

We propose a generalization of the speed-accuracy response model (SARM) introduced by Maris and van der Maas (Psychometrika 77:615-633, 2012). In these models, the scores that result from a scoring rule that incorporates both the speed and accuracy of item responses are modeled. Our generalization is similar to that of the one-parameter logistic (or Rasch) model to the two-parameter logistic (or Birnbaum) model in item response theory. An expectation-maximization (EM) algorithm for estimating model parameters and standard errors was developed. Furthermore, methods to assess model fit are provided in the form of generalized residuals for item score functions and saddlepoint approximations to the density of the sum score. The presented methods were evaluated in a small simulation study, the results of which indicated good parameter recovery and reasonable type I error rates for the residuals. Finally, the methods were applied to two real data sets. It was found that the two-parameter SARM showed improved fit compared to the one-parameter SARM in both data sets.

摘要

我们提出了 Maris 和 van der Maas(Psychometrika 77:615-633,2012)提出的速度-准确性响应模型(SARM)的推广。在这些模型中,对包含项目反应速度和准确性的评分规则所产生的分数进行建模。我们的推广类似于项目反应理论中的单参数逻辑(或 Rasch)模型到双参数逻辑(或 Birnbaum)模型。开发了一种期望最大化(EM)算法来估计模型参数和标准误差。此外,还提供了以项目得分函数的广义残差和总和得分密度的鞍点逼近形式表示的模型拟合度评估方法。在一个小型模拟研究中评估了所提出的方法,结果表明残差的参数恢复良好,且Ⅰ型错误率合理。最后,该方法应用于两个真实数据集。结果发现,在两个数据集上,双参数 SARM 的拟合度均优于单参数 SARM。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验