Suppr超能文献

比较定量质谱平台监测肺癌中激酶 ATP 探针摄取。

Comparison of Quantitative Mass Spectrometry Platforms for Monitoring Kinase ATP Probe Uptake in Lung Cancer.

机构信息

H. Lee Moffitt Cancer Center & Research Institute , Tampa, Florida 33612-9497, United States.

Cancer Biology Ph.D. Program, University of South Florida , Tampa, Florida 33620, United States.

出版信息

J Proteome Res. 2018 Jan 5;17(1):63-75. doi: 10.1021/acs.jproteome.7b00329. Epub 2017 Nov 22.

Abstract

Recent developments in instrumentation and bioinformatics have led to new quantitative mass spectrometry platforms including LC-MS/MS with data-independent acquisition (DIA) and targeted analysis using parallel reaction monitoring mass spectrometry (LC-PRM), which provide alternatives to well-established methods, such as LC-MS/MS with data-dependent acquisition (DDA) and targeted analysis using multiple reaction monitoring mass spectrometry (LC-MRM). These tools have been used to identify signaling perturbations in lung cancers and other malignancies, supporting the development of effective kinase inhibitors and, more recently, providing insights into therapeutic resistance mechanisms and drug repurposing opportunities. However, detection of kinases in biological matrices can be challenging; therefore, activity-based protein profiling enrichment of ATP-utilizing proteins was selected as a test case for exploring the limits of detection of low-abundance analytes in complex biological samples. To examine the impact of different MS acquisition platforms, quantification of kinase ATP uptake following kinase inhibitor treatment was analyzed by four different methods: LC-MS/MS with DDA and DIA, LC-MRM, and LC-PRM. For discovery data sets, DIA increased the number of identified kinases by 21% and reduced missingness when compared with DDA. In this context, MRM and PRM were most effective at identifying global kinome responses to inhibitor treatment, highlighting the value of a priori target identification and manual evaluation of quantitative proteomics data sets. We compare results for a selected set of desthiobiotinylated peptides from PRM, MRM, and DIA and identify considerations for selecting a quantification method and postprocessing steps that should be used for each data acquisition strategy.

摘要

近年来,仪器设备和生物信息学的发展催生了新的定量质谱平台,包括具有数据非依赖性采集(DIA)的 LC-MS/MS 和使用平行反应监测质谱(LC-PRM)的靶向分析,这些平台为已建立的方法提供了替代方案,例如具有数据依赖性采集(DDA)的 LC-MS/MS 和使用多重反应监测质谱(LC-MRM)的靶向分析。这些工具已被用于鉴定肺癌和其他恶性肿瘤中的信号转导扰动,支持有效激酶抑制剂的开发,最近还为治疗抵抗机制和药物再利用机会提供了深入了解。然而,在生物基质中检测激酶具有挑战性;因此,选择 ATP 利用蛋白的基于活性的蛋白谱富集作为探索复杂生物样本中低丰度分析物检测限的测试案例。为了研究不同 MS 采集平台的影响,通过四种不同方法分析了激酶抑制剂处理后激酶的 ATP 摄取量:DDA 和 DIA 的 LC-MS/MS、LC-MRM 和 LC-PRM。对于发现数据集,与 DDA 相比,DIA 将鉴定的激酶数量增加了 21%,并减少了缺失值。在这种情况下,MRM 和 PRM 最有效地识别了抑制剂处理对整个激酶组的反应,突出了预先确定靶标和手动评估定量蛋白质组学数据集的价值。我们比较了 PRM、MRM 和 DIA 从选定的一组去硫生物素化肽中获得的结果,并确定了为每种数据采集策略选择定量方法和后处理步骤时应考虑的因素。

相似文献

1
Comparison of Quantitative Mass Spectrometry Platforms for Monitoring Kinase ATP Probe Uptake in Lung Cancer.
J Proteome Res. 2018 Jan 5;17(1):63-75. doi: 10.1021/acs.jproteome.7b00329. Epub 2017 Nov 22.
2
Technical advances in proteomics: new developments in data-independent acquisition.
F1000Res. 2016 Mar 31;5. doi: 10.12688/f1000research.7042.1. eCollection 2016.
3
A review on mass spectrometry-based quantitative proteomics: Targeted and data independent acquisition.
Anal Chim Acta. 2017 Apr 29;964:7-23. doi: 10.1016/j.aca.2017.01.059. Epub 2017 Feb 2.
4
A targeted quantitative proteomics strategy for global kinome profiling of cancer cells and tissues.
Mol Cell Proteomics. 2014 Apr;13(4):1065-75. doi: 10.1074/mcp.M113.036905. Epub 2014 Feb 11.
5
Targeted proteomics coming of age - SRM, PRM and DIA performance evaluated from a core facility perspective.
Proteomics. 2016 Aug;16(15-16):2183-92. doi: 10.1002/pmic.201500502. Epub 2016 Jun 8.
6
Characterization of Cerebrospinal Fluid via Data-Independent Acquisition Mass Spectrometry.
J Proteome Res. 2018 Oct 5;17(10):3418-3430. doi: 10.1021/acs.jproteome.8b00308. Epub 2018 Sep 12.

引用本文的文献

1
Quantification of Peptides in Food Hydrolysate from .
Foods. 2025 Mar 28;14(7):1180. doi: 10.3390/foods14071180.
2
Concatemer-assisted stoichiometry analysis: targeted mass spectrometry for protein quantification.
Life Sci Alliance. 2024 Dec 31;8(3). doi: 10.26508/lsa.202403007. Print 2025 Mar.
3
Concatemer Assisted Stoichiometry Analysis (CASA): targeted mass spectrometry for protein quantification.
bioRxiv. 2024 Jul 27:2024.07.26.605382. doi: 10.1101/2024.07.26.605382.
4
Deciphering host dynamics using dual activity-based protein profiling of ATP-interacting proteins.
mSystems. 2024 May 16;9(5):e0017924. doi: 10.1128/msystems.00179-24. Epub 2024 Apr 24.
5
Deep Learning Based MS2 Feature Detection for Data-Independent Shotgun Proteomics.
Proceedings (IEEE Int Conf Bioinformatics Biomed). 2022 Dec;2022:2342-2348. doi: 10.1109/bibm55620.2022.9995258. Epub 2023 Jan 2.
6
Mapping the Protein Kinome: Current Strategy and Future Direction.
Cells. 2023 Mar 17;12(6):925. doi: 10.3390/cells12060925.
7
PRM-LIVE with Trapped Ion Mobility Spectrometry and Its Application in Selectivity Profiling of Kinase Inhibitors.
Anal Chem. 2021 Oct 19;93(41):13791-13799. doi: 10.1021/acs.analchem.1c02349. Epub 2021 Oct 4.
8
Targeted Protein Quantification Using Parallel Reaction Monitoring (PRM).
Methods Mol Biol. 2021;2228:145-157. doi: 10.1007/978-1-0716-1024-4_11.
9
Driving Under the Influence of Drugs: A Single Parallel Monitoring-Based Quantification Approach on Whole Blood.
Front Chem. 2020 Aug 26;8:626. doi: 10.3389/fchem.2020.00626. eCollection 2020.
10
GLOBAL AND TARGETED PROFILING OF GTP-BINDING PROTEINS IN BIOLOGICAL SAMPLES BY MASS SPECTROMETRY.
Mass Spectrom Rev. 2021 May;40(3):215-235. doi: 10.1002/mas.21637. Epub 2020 Jun 10.

本文引用的文献

1
Quantification of Human Kallikrein-Related Peptidases in Biological Fluids by Multiplatform Targeted Mass Spectrometry Assays.
Mol Cell Proteomics. 2016 Sep;15(9):2863-76. doi: 10.1074/mcp.M115.057695. Epub 2016 Jul 1.
2
The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2016 update.
Nucleic Acids Res. 2016 Jul 8;44(W1):W3-W10. doi: 10.1093/nar/gkw343. Epub 2016 May 2.
3
Targeted proteomics coming of age - SRM, PRM and DIA performance evaluated from a core facility perspective.
Proteomics. 2016 Aug;16(15-16):2183-92. doi: 10.1002/pmic.201500502. Epub 2016 Jun 8.
4
Technical advances in proteomics: new developments in data-independent acquisition.
F1000Res. 2016 Mar 31;5. doi: 10.12688/f1000research.7042.1. eCollection 2016.
5
Target Identification in Small Cell Lung Cancer via Integrated Phenotypic Screening and Activity-Based Protein Profiling.
Mol Cancer Ther. 2016 Feb;15(2):334-42. doi: 10.1158/1535-7163.MCT-15-0444. Epub 2016 Jan 15.
6
Quantitative Profiling of Protein Tyrosine Kinases in Human Cancer Cell Lines by Multiplexed Parallel Reaction Monitoring Assays.
Mol Cell Proteomics. 2016 Feb;15(2):682-91. doi: 10.1074/mcp.O115.056713. Epub 2015 Dec 2.
7
Advancing Urinary Protein Biomarker Discovery by Data-Independent Acquisition on a Quadrupole-Orbitrap Mass Spectrometer.
J Proteome Res. 2015 Nov 6;14(11):4752-62. doi: 10.1021/acs.jproteome.5b00826. Epub 2015 Oct 22.
10
Processing strategies and software solutions for data-independent acquisition in mass spectrometry.
Proteomics. 2015 Mar;15(5-6):964-80. doi: 10.1002/pmic.201400323. Epub 2015 Feb 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验