Suppr超能文献

蛋白质组学的技术进展:非数据依赖采集的新发展

Technical advances in proteomics: new developments in data-independent acquisition.

作者信息

Hu Alex, Noble William S, Wolf-Yadlin Alejandro

机构信息

Department of Genome Sciences, University of Washington, Seattle, WA, 98109, USA.

出版信息

F1000Res. 2016 Mar 31;5. doi: 10.12688/f1000research.7042.1. eCollection 2016.

Abstract

The ultimate aim of proteomics is to fully identify and quantify the entire complement of proteins and post-translational modifications in biological samples of interest. For the last 15 years, liquid chromatography-tandem mass spectrometry (LC-MS/MS) in data-dependent acquisition (DDA) mode has been the standard for proteomics when sampling breadth and discovery were the main objectives; multiple reaction monitoring (MRM) LC-MS/MS has been the standard for targeted proteomics when precise quantification, reproducibility, and validation were the main objectives. Recently, improvements in mass spectrometer design and bioinformatics algorithms have resulted in the rediscovery and development of another sampling method: data-independent acquisition (DIA). DIA comprehensively and repeatedly samples every peptide in a protein digest, producing a complex set of mass spectra that is difficult to interpret without external spectral libraries. Currently, DIA approaches the identification breadth of DDA while achieving the reproducible quantification characteristic of MRM or its newest version, parallel reaction monitoring (PRM). In comparative de novo identification and quantification studies in human cell lysates, DIA identified up to 89% of the proteins detected in a comparable DDA experiment while providing reproducible quantification of over 85% of them. DIA analysis aided by spectral libraries derived from prior DIA experiments or auxiliary DDA data produces identification and quantification as reproducible and precise as that achieved by MRM/PRM, except on low‑abundance peptides that are obscured by stronger signals. DIA is still a work in progress toward the goal of sensitive, reproducible, and precise quantification without external spectral libraries. New software tools applied to DIA analysis have to deal with deconvolution of complex spectra as well as proper filtering of false positives and false negatives. However, the future outlook is positive, and various researchers are working on novel bioinformatics techniques to address these issues and increase the reproducibility, fidelity, and identification breadth of DIA.

摘要

蛋白质组学的最终目标是全面鉴定和定量目标生物样品中蛋白质的完整组成及其翻译后修饰。在过去的15年中,以数据依赖采集(DDA)模式运行的液相色谱-串联质谱(LC-MS/MS)一直是蛋白质组学的标准方法,当时采样广度和发现是主要目标;当精确定量、重现性和验证是主要目标时,多反应监测(MRM)LC-MS/MS一直是靶向蛋白质组学的标准方法。最近,质谱仪设计和生物信息学算法的改进导致了另一种采样方法的重新发现和发展:数据非依赖采集(DIA)。DIA对蛋白质消化物中的每个肽段进行全面且重复的采样,产生一组复杂的质谱图,如果没有外部光谱库,这些质谱图很难解释。目前,DIA在实现MRM或其最新版本平行反应监测(PRM)的可重现定量特性的同时,接近了DDA的鉴定广度。在对人类细胞裂解物进行的从头比较鉴定和定量研究中,DIA鉴定出了在可比的DDA实验中检测到的高达89%的蛋白质,同时对其中超过85%的蛋白质进行了可重现的定量。借助先前DIA实验或辅助DDA数据衍生的光谱库进行的DIA分析,除了在被更强信号掩盖的低丰度肽段上,其鉴定和定量的重现性和精确性与MRM/PRM相当。在无需外部光谱库即可实现灵敏、可重现和精确定量的目标方面,DIA仍在不断发展中。应用于DIA分析的新软件工具必须处理复杂光谱的去卷积以及对假阳性和假阴性的适当过滤。然而,未来前景乐观,众多研究人员正在致力于开发新的生物信息学技术来解决这些问题,并提高DIA的重现性、保真度和鉴定广度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3f16/4821292/6b5b4f09107d/f1000research-5-7580-g0000.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验