Suppr超能文献

优化的虚拟筛选工作流程:迈向基于靶点的HIV-1蛋白酶多项式评分函数

Optimized Virtual Screening Workflow: Towards Target-Based Polynomial Scoring Functions for HIV-1 Protease.

作者信息

Pintro Val Oliveira, de Azevedo Walter Filgueira

机构信息

Laboratory of Computational Systems Biology, School of Sciences, Pontifical Catholic University of Rio Grande do Sul, Av. Ipiranga, 6681 Partenon Porto Alegre-RS, 90619-900, Brazil.

Graduate Program in Cellular and Molecular Biology, School of Sciences - Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6681, Porto Alegre-RS 90619-900, Brazil.

出版信息

Comb Chem High Throughput Screen. 2017;20(9):820-827. doi: 10.2174/1386207320666171121110019.

Abstract

BACKGROUND

One key step in the development of inhibitors for an enzyme is the application of computational methodologies to predict protein-ligand interactions. The abundance of structural and ligand-binding information for HIV-1 protease opens up the possibility to apply computational methods to develop scoring functions targeted to this enzyme.

OBJECTIVE

Our goal here is to develop an integrated molecular docking approach to investigate protein-ligand interactions with a focus on the HIV-1 protease. In addition, with this methodology, we intend to build target-based scoring functions to predict inhibition constant (K) for ligands against the HIV-1 protease system.

METHODS

Here, we described a computational methodology to build datasets with decoys and actives directly taken from crystallographic structures to be applied in evaluation of docking performance using the program SAnDReS. Furthermore, we built a novel function using as terms MolDock and PLANTS scoring functions to predict binding affinity. To build a scoring function targeted to the HIV-1 protease, we have used machine-learning techniques.

RESULTS

The integrated approach reported here has been tested against a dataset comprised of 71 crystallographic structures of HIV protease, to our knowledge the largest HIV-1 protease dataset tested so far. Comparison of our docking simulations with benchmarks indicated that the present approach is able to generate results with improved accuracy.

CONCLUSION

We developed a scoring function with performance higher than previously published benchmarks for HIV-1 protease. Taken together, we believe that the approach here described has the potential to improve docking accuracy in drug design projects focused on HIV-1 protease.

摘要

背景

开发酶抑制剂的一个关键步骤是应用计算方法来预测蛋白质-配体相互作用。HIV-1蛋白酶丰富的结构和配体结合信息为应用计算方法开发针对该酶的评分函数提供了可能性。

目的

我们的目标是开发一种综合分子对接方法,以研究蛋白质-配体相互作用,重点是HIV-1蛋白酶。此外,通过这种方法,我们打算构建基于靶点的评分函数,以预测配体对HIV-1蛋白酶系统的抑制常数(K)。

方法

在此,我们描述了一种计算方法,用于构建数据集,其中诱饵和活性物质直接取自晶体结构,以使用SAnDReS程序评估对接性能。此外,我们使用MolDock和PLANTS评分函数构建了一个新的函数来预测结合亲和力。为了构建针对HIV-1蛋白酶的评分函数,我们使用了机器学习技术。

结果

本文报道的综合方法已针对一个由71个HIV蛋白酶晶体结构组成的数据集进行了测试,据我们所知,这是迄今为止测试的最大的HIV-1蛋白酶数据集。我们的对接模拟与基准的比较表明,目前的方法能够产生准确性更高的结果。

结论

我们开发了一种性能高于先前公布的HIV-1蛋白酶基准的评分函数。综上所述,我们认为本文所述方法有潜力提高专注于HIV-1蛋白酶的药物设计项目中的对接准确性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验