Travis K A, Boulant J A
Department of Physiology, College of Medicine, Ohio State University, Columbus 43210.
Am J Physiol. 1989 Feb;256(2 Pt 2):R560-6. doi: 10.1152/ajpregu.1989.256.2.R560.
Because morphological differences exist in hypothalamic neurons from spontaneously hypertensive (SH) and normotensive Wistar-Kyoto (WKY) rats, the present study recorded neuronal spontaneous activity and thermosensitivity from diencephalic tissue slices of these two strains. With the use of extracellular recordings from horizontal tissue slices, neurons were characterized according to location, firing rate at 37 degrees C, and firing rate response to changes in local tissue temperature. Compared with WKY neurons, SH neurons had higher firing rates in the preoptic-anterior hypothalamus and lower firing rates in the dorsomedial hypothalamus. In addition, SH warm-sensitive neurons were less thermosensitive over the hyperthermic range (37-40 degrees C), and SH temperature-insensitive neurons had higher spontaneous firing rates. These differences in spontaneous activity and thermosensitivity provide a neuronal basis to explain the elevation of core temperature observed in SH rats.