Suppr超能文献

经TCNE修饰的石墨烯作为NO分子的吸附剂:一项密度泛函理论研究。

TCNE-modified graphene as an adsorbent for NO molecule: a DFT study.

作者信息

Rastegar Somayeh F, Osouleddini Noushin

机构信息

Young Researchers and Elite Club, Islamic Azad University, Central Tehran Branch, Tehran, Iran.

Department of Applied Chemistry, Faculty of Pharmaceutical Chemistry, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran.

出版信息

J Mol Model. 2017 Nov 22;23(12):352. doi: 10.1007/s00894-017-3526-2.

Abstract

Adsorption behavior of nitrous oxide (NO) on pristine graphene (PG) and tetracyanoethylene (TCNE) modified PG surfaces is investigated using density functional theory. A number of initial adsorbate geometries are considered on both surfaces and the most stable ones are chosen upon calculation of the adsorption energies (E). NO is found to adsorb in a weakly exoergic process (E ∼ -3.18 kJ mol) at the equilibrium distance of 3.52 Å on the PG surface. NO adsorption can be greatly enhanced with the presence of a TCNE molecule (E = -87.00 kJ mol). Mulliken charge analysis confirms that adsorption of NO is not accompanied by distinct charge transfer from the surfaces to the molecule (˂ 0.001 │e│ for each case). Moreover, on the basis of calculated changes in the HOMO/LUMO energy gap, it is found that electronic properties of PG and TCNE modified PG are not sensitive toward adsorption of NO, indicating that both surfaces are not good enough to introduce as an NO detector. However, the considerable amount of E in TCNE modified PG can be a guide to the design of graphene-based adsorbents for NO capture.

摘要

采用密度泛函理论研究了一氧化二氮(NO)在原始石墨烯(PG)和四氰基乙烯(TCNE)修饰的PG表面上的吸附行为。在两个表面上考虑了许多初始吸附质几何结构,并在计算吸附能(E)后选择了最稳定的结构。发现在PG表面上,NO在平衡距离为3.52 Å时以弱放热过程(E ∼ -3.18 kJ mol)吸附。在存在TCNE分子的情况下,NO的吸附可以大大增强(E = -87.00 kJ mol)。Mulliken电荷分析证实,NO的吸附不会伴随着从表面到分子的明显电荷转移(每种情况均小于0.001 │e│)。此外,根据计算得到的最高占据分子轨道/最低未占据分子轨道(HOMO/LUMO)能隙变化,发现PG和TCNE修饰的PG的电子性质对NO的吸附不敏感,这表明这两个表面都不足以作为NO探测器引入。然而,TCNE修饰的PG中可观的E值可以为设计用于捕获NO的石墨烯基吸附剂提供指导。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验