Suppr超能文献

真核生物转录偶联DNA修复起始的结构基础。

Structural basis for the initiation of eukaryotic transcription-coupled DNA repair.

作者信息

Xu Jun, Lahiri Indrajit, Wang Wei, Wier Adam, Cianfrocco Michael A, Chong Jenny, Hare Alissa A, Dervan Peter B, DiMaio Frank, Leschziner Andres E, Wang Dong

机构信息

Division of Pharmaceutical Sciences, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, USA.

Department of Cellular & Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, California 92093, USA.

出版信息

Nature. 2017 Nov 30;551(7682):653-657. doi: 10.1038/nature24658. Epub 2017 Nov 22.

Abstract

Eukaryotic transcription-coupled repair (TCR) is an important and well-conserved sub-pathway of nucleotide excision repair that preferentially removes DNA lesions from the template strand that block translocation of RNA polymerase II (Pol II). Cockayne syndrome group B (CSB, also known as ERCC6) protein in humans (or its yeast orthologues, Rad26 in Saccharomyces cerevisiae and Rhp26 in Schizosaccharomyces pombe) is among the first proteins to be recruited to the lesion-arrested Pol II during the initiation of eukaryotic TCR. Mutations in CSB are associated with the autosomal-recessive neurological disorder Cockayne syndrome, which is characterized by progeriod features, growth failure and photosensitivity. The molecular mechanism of eukaryotic TCR initiation remains unclear, with several long-standing unanswered questions. How cells distinguish DNA lesion-arrested Pol II from other forms of arrested Pol II, the role of CSB in TCR initiation, and how CSB interacts with the arrested Pol II complex are all unknown. The lack of structures of CSB or the Pol II-CSB complex has hindered our ability to address these questions. Here we report the structure of the S. cerevisiae Pol II-Rad26 complex solved by cryo-electron microscopy. The structure reveals that Rad26 binds to the DNA upstream of Pol II, where it markedly alters its path. Our structural and functional data suggest that the conserved Swi2/Snf2-family core ATPase domain promotes the forward movement of Pol II, and elucidate key roles for Rad26 in both TCR and transcription elongation.

摘要

真核生物转录偶联修复(TCR)是核苷酸切除修复中一条重要且高度保守的亚途径,它优先从模板链上移除阻碍RNA聚合酶II(Pol II)移位的DNA损伤。人类的科凯恩综合征B组(CSB,也称为ERCC6)蛋白(或其酵母同源物,酿酒酵母中的Rad26和裂殖酵母中的Rhp26)是真核生物TCR起始过程中最早被招募到损伤停滞的Pol II处的蛋白质之一。CSB基因突变与常染色体隐性神经疾病科凯恩综合征相关,该疾病的特征为早老样特征、生长发育迟缓及光敏感。真核生物TCR起始的分子机制仍不清楚,存在几个长期未得到解答的问题。细胞如何区分DNA损伤停滞的Pol II与其他形式的停滞Pol II、CSB在TCR起始中的作用以及CSB如何与停滞的Pol II复合物相互作用均不清楚。CSB或Pol II-CSB复合物结构的缺失阻碍了我们解决这些问题的能力。在此,我们报道了通过冷冻电子显微镜解析的酿酒酵母Pol II-Rad26复合物的结构。该结构揭示Rad26结合在Pol II上游的DNA上,在那里它显著改变了Pol II的路径。我们的结构和功能数据表明,保守的Swi2/Snf2家族核心ATP酶结构域促进了Pol II的向前移动,并阐明了Rad26在TCR和转录延伸中的关键作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c4fe/5907806/9528376fdae3/nihms914261f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验