Suppr超能文献

使用矫形器安装传感器早期检测从坐到站姿势转变的开始。

Early Detection of the Initiation of Sit-to-Stand Posture Transitions Using Orthosis-Mounted Sensors.

机构信息

Department of Electrical and Computer Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA.

Department of Mechanical Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA.

出版信息

Sensors (Basel). 2017 Nov 23;17(12):2712. doi: 10.3390/s17122712.

Abstract

Assistance during sit-to-stand (SiSt) transitions for frail elderly may be provided by powered orthotic devices. The control of the powered orthosis may be performed by the means of electromyography (EMG), which requires direct contact of measurement electrodes to the skin. The purpose of this study was to determine if a non-EMG-based method that uses inertial sensors placed at different positions on the orthosis, and a lightweight pattern recognition algorithm may accurately identify SiSt transitions without false positives. A novel method is proposed to eliminate false positives based on a two-stage design: stage one detects the sitting posture; stage two recognizes the initiation of a SiSt transition from a sitting position. The method was validated using data from 10 participants who performed 34 different activities and posture transitions. Features were obtained from the sensor signals and then combined into lagged epochs. A reduced number of features was selected using a minimum-redundancy-maximum-relevance (mRMR) algorithm and forward feature selection. To obtain a recognition model with low computational complexity, we compared the use of an extreme learning machine (ELM) and multilayer perceptron (MLP) for both stages of the recognition algorithm. Both classifiers were able to accurately identify all posture transitions with no false positives. The average detection time was 0.19 ± 0.33 s for ELM and 0.13 ± 0.32 s for MLP. The MLP classifier exhibited less time complexity in the recognition phase compared to ELM. However, the ELM classifier presented lower computational demands in the training phase. Results demonstrated that the proposed algorithm could potentially be adopted to control a powered orthosis.

摘要

在体弱老年人从坐到站(SiSt)的转换过程中,可以使用动力矫形器提供辅助。动力矫形器的控制可以通过肌电图(EMG)来实现,这需要测量电极与皮肤直接接触。本研究的目的是确定是否可以使用一种非基于 EMG 的方法,该方法使用放置在矫形器不同位置的惯性传感器和轻量级的模式识别算法,在没有假阳性的情况下准确识别 SiSt 转换。提出了一种新的方法,通过两级设计来消除假阳性:第一级检测坐姿;第二级从坐姿识别 SiSt 转换的开始。该方法使用 10 名参与者执行的 34 种不同活动和姿势转换的数据进行了验证。从传感器信号中获取特征,然后将其组合成滞后时间段。使用最小冗余最大相关性(mRMR)算法和前向特征选择选择了数量较少的特征。为了获得具有低计算复杂度的识别模型,我们比较了极端学习机(ELM)和多层感知器(MLP)在识别算法的两个阶段中的使用。两种分类器都能够准确识别所有的姿势转换,没有假阳性。对于 ELM 和 MLP,平均检测时间分别为 0.19 ± 0.33 s 和 0.13 ± 0.32 s。与 ELM 相比,MLP 分类器在识别阶段的时间复杂度较低。然而,ELM 分类器在训练阶段的计算需求较低。结果表明,所提出的算法有可能被用于控制动力矫形器。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d5e/5751092/f6d6de253d05/sensors-17-02712-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验