Suppr超能文献

诊断乳腺内感染:控制纵向乳房健康研究中的错误分类偏差。

Diagnosing intramammary infection: Controlling misclassification bias in longitudinal udder health studies.

作者信息

Haine Denis, Dohoo Ian, Scholl Daniel, Dufour Simon

机构信息

Faculté de médecine vétérinaire, Université de Montréal, 3200 rue Sicotte, St-Hyacinthe, Québec, Canada J2S 2M2; Canadian Bovine Mastitis and Milk Quality Research Network, St-Hyacinthe, Québec, Canada J2S 2M2.

Atlantic Veterinary College, Centre for Veterinary Epidemiological Research, University of Prince Edward Island, 550 University Avenue, Charlottetown, Prince Edward Island, Canada C1A 4P3; Canadian Bovine Mastitis and Milk Quality Research Network, St-Hyacinthe, Québec, Canada J2S 2M2.

出版信息

Prev Vet Med. 2018 Feb 1;150:162-167. doi: 10.1016/j.prevetmed.2017.11.010. Epub 2017 Nov 11.

Abstract

Using imperfect tests may lead to biased estimates of disease frequency and of associations between risk factors and disease. For instance in longitudinal udder health studies, both quarters at risk and incident intramammary infections (IMI) can be wrongly identified, resulting in selection and misclassification bias, respectively. Diagnostic accuracy can possibly be improved by using duplicate or triplicate samples for identifying quarters at risk and, subsequently, incident IMI. The objectives of this study were to evaluate the relative impact of selection and misclassification biases resulting from IMI misclassification on measures of disease frequency (incidence) and of association with hypothetical exposures. The effect of improving the sampling strategy by collecting duplicate or triplicate samples at first or second sampling was also assessed. Data sets from a hypothetical cohort study were simulated and analyzed based on a separate scenario for two common mastitis pathogens representing two distinct prevailing patterns. Staphylococcus aureus, a relatively uncommon pathogen with a low incidence, is identified with excellent sensitivity and almost perfect specificity. Coagulase negative staphylococci (CNS) are more prevalent, with a high incidence, and with milk bacteriological culture having fair Se but excellent Sp. The generated data sets for each scenario were emulating a longitudinal cohort study with two milk samples collected one month apart from each quarter of a random sample of 30 cows/herd, from 100 herds, with a herd-level exposure having a known strength of association. Incidence of IMI and measure of association with exposure (odds ratio; OR) were estimated using Markov Chain Monte Carlo (MCMC) for each data set and using different sampling strategies (single, duplicate, triplicate samples with series or parallel interpretation) for identifying quarters at risk and incident IMI. For S. aureus biases were small with an observed incidence of 0.29 versus a true incidence of 0.25IMI/100 quarter-month. In the CNS scenario, diagnostic errors in the two samples led to important selection (40IMI/100 quarter-month) and misclassification (23IMI/100 quarter-month) biases for estimation of IMI incidence, respectively. These biases were in opposite direction and therefore the incidence measure obtained using single sampling on both the first and second test (29IMI/100 quarter-month) was exactly the true value. In the S. aureus scenario the OR for association with exposure showed little bias (observed OR of 3.1 versus true OR of 3.2). The CNS scenario revealed the presence of a large misclassification bias moving the association towards the null value (OR of 1.7 versus true OR of 2.6). Little improvement could be brought using different sampling strategies aiming at improving Se and/or Sp on first and/or second sampling or using a two out of three interpretation for IMI definition. Increasing number of samples or tests can prevent bias in some situations but efforts can be spared by holding to a single sampling approach in others. When designing longitudinal studies, evaluating potential biases and best sampling strategy is as critical as the choice of test.

摘要

使用不完善的检测方法可能会导致对疾病频率以及风险因素与疾病之间关联的估计产生偏差。例如,在纵向乳房健康研究中,有风险的乳房象限和新发乳房内感染(IMI)都可能被错误识别,分别导致选择偏倚和错误分类偏倚。通过使用重复或三次采样来识别有风险的乳房象限以及随后的新发IMI,诊断准确性可能会得到提高。本研究的目的是评估因IMI错误分类导致的选择偏倚和错误分类偏倚对疾病频率(发病率)测量以及与假设暴露关联的相对影响。还评估了通过在第一次或第二次采样时收集重复或三次样本改进采样策略的效果。基于代表两种不同流行模式的两种常见乳腺炎病原体的单独场景,模拟并分析了来自假设队列研究的数据集。金黄色葡萄球菌是一种相对不常见、发病率低的病原体,其检测具有出色的敏感性和几乎完美的特异性。凝固酶阴性葡萄球菌(CNS)更为普遍,发病率高,且乳汁细菌培养的敏感性一般但特异性出色。针对每个场景生成的数据集模拟了一项纵向队列研究,从100个牛群中随机抽取30头牛/群,每个牛的每个乳房象限相隔一个月采集两份乳汁样本,已知牛群水平暴露具有一定的关联强度。使用马尔可夫链蒙特卡罗(MCMC)方法对每个数据集估计IMI发病率以及与暴露的关联测量值(比值比;OR),并使用不同的采样策略(单次、重复、三次采样,采用串联或并联解读)来识别有风险的乳房象限和新发IMI。对于金黄色葡萄球菌,偏差较小,观察到的发病率为0.29,而真实发病率为0.25 IMI/100个乳房象限 - 月。在CNS场景中,两份样本中的诊断错误分别导致估计IMI发病率时出现重要的选择偏倚(40 IMI/100个乳房象限 - 月)和错误分类偏倚(23 IMI/100个乳房象限 - 月)。这些偏倚方向相反,因此在第一次和第二次检测时都使用单次采样获得的发病率测量值(29 IMI/100个乳房象限 - 月)恰好是真实值。在金黄色葡萄球菌场景中,与暴露关联的OR显示偏差较小(观察到的OR为3.1,而真实OR为3.2)。CNS场景显示存在较大的错误分类偏倚,使关联趋向于无效值(OR为1.7,而真实OR为2.6)。采用旨在提高第一次和/或第二次采样时的敏感性和/或特异性的不同采样策略,或对IMI定义采用三分之二解读,几乎无法带来改善。增加样本或检测次数在某些情况下可以防止偏差,但在其他情况下坚持单次采样方法可以节省精力。在设计纵向研究时,评估潜在偏倚和最佳采样策略与检测方法的选择同样重要。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验