Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA.
Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA.
Nat Commun. 2017 Nov 23;8(1):1745. doi: 10.1038/s41467-017-01844-2.
Photo-induced non-radiative energy dissipation is a potential pathway to induce structural-phase transitions in two-dimensional materials. For advancing this field, a quantitative understanding of real-time atomic motion and lattice temperature is required. However, this understanding has been incomplete due to a lack of suitable experimental techniques. Here, we use ultrafast electron diffraction to directly probe the subpicosecond conversion of photoenergy to lattice vibrations in a model bilayered semiconductor, molybdenum diselenide. We find that when creating a high charge carrier density, the energy is efficiently transferred to the lattice within one picosecond. First-principles nonadiabatic quantum molecular dynamics simulations reproduce the observed ultrafast increase in lattice temperature and the corresponding conversion of photoenergy to lattice vibrations. Nonadiabatic quantum simulations further suggest that a softening of vibrational modes in the excited state is involved in efficient and rapid energy transfer between the electronic system and the lattice.
光诱导非辐射能量耗散是诱导二维材料结构相变的一种潜在途径。为了推进这一领域的研究,需要定量了解实时原子运动和晶格温度。然而,由于缺乏合适的实验技术,这种理解并不完整。在这里,我们使用超快电子衍射直接探测模型双层半导体二硒化钼中光能量在亚皮秒时间内转化为晶格振动的过程。我们发现,当创建高电荷载流子密度时,能量在一个皮秒内被有效地传递到晶格中。第一性原理非绝热量子分子动力学模拟再现了观察到的晶格温度的超快增加以及光能量向晶格振动的相应转换。非绝热量子模拟进一步表明,在激发态中振动模式的软化参与了电子系统和晶格之间高效和快速的能量转移。