Suppr超能文献

在下肢假肢设计优化中考虑被动机械性能和患者使用者的运动表现,以提高康复效果。

Considering passive mechanical properties and patient user motor performance in lower limb prosthesis design optimization to enhance rehabilitation outcomes.

作者信息

Major Matthew J, Fey Nicholas P

机构信息

Jesse Brown VA Medical Center, Chicago IL, USA.

Northwestern University Prosthetics Orthotics Center, Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago IL, USA.

出版信息

Phys Ther Rev. 2017 Jul 17;22(3-4):1-15. doi: 10.1080/10833196.2017.1346033.

Abstract

BACKGROUND

Selection of prosthesis mechanical characteristics to restore function of persons with lower-limb loss can be framed as an optimization problem to satisfy a given performance objective. However, the choice of a particular objective is critical, and considering only device and generalizable outcomes across users without accounting for inherent motor performance likely restricts a given patient from fully realizing the benefits of a prosthetic intervention.

OBJECTIVES

This review presents methods for optimizing passive below-knee prosthesis designs to maximize rehabilitation outcomes and how considerations on patient motor performance may enhance these outcomes.

MAJOR FINDINGS

Available literature supports that considering patient-specific variables pertaining to motor performance permits a multidimensional landscape relating device characteristics and user function, which may yield more accurate predictions of rehabilitation outcomes for individual patients. Moreover, the addition of targeted physical therapeutic interventions that encourage user self-organization may further improve these outcomes. We note the potential of existing paradigms to address these additional dimensions, and we encourage investigators to consider the many different performance objectives available for prosthesis optimization.

CONCLUSIONS

By considering user motor performance in combination with prosthesis mechanical characteristics, a staged optimization approach can be formulated which acknowledges that device modifications may only improve outcomes to a certain extent and user self-organization is a critical component to complete rehabilitation. An iterative process that can be integrated within existing rehabilitative practices accounts for changes in patient status through combined targeted prosthetic solutions and physical therapeutic techniques, and embodies the concept of personalized intervention for patients with lower limb-loss.

摘要

背景

选择具有特定机械特性的假肢以恢复下肢缺失者的功能,可被视为一个优化问题,旨在满足特定的性能目标。然而,特定目标的选择至关重要,仅考虑假肢装置以及适用于所有用户的普遍结果,而不考虑个体固有的运动表现,可能会使特定患者无法充分实现假肢干预的益处。

目的

本综述介绍了优化被动式膝下假肢设计以最大化康复效果的方法,以及考虑患者运动表现如何能提升这些效果。

主要发现

现有文献表明,考虑与运动表现相关的患者特定变量,能构建一个将假肢装置特性与用户功能联系起来的多维框架,这可能为个体患者的康复效果提供更准确的预测。此外,增加有针对性的物理治疗干预以促进用户自我组织,可能会进一步改善这些效果。我们指出了现有模式在解决这些额外维度方面的潜力,并鼓励研究人员考虑用于假肢优化的众多不同性能目标。

结论

通过结合用户运动表现和假肢机械特性来考虑,可以制定一种分阶段的优化方法,该方法承认假肢装置的改进可能仅在一定程度上改善效果,而用户自我组织是完全康复的关键组成部分。一个可整合到现有康复实践中的迭代过程,通过联合有针对性的假肢解决方案和物理治疗技术,考虑了患者状态的变化,并体现了对下肢缺失患者进行个性化干预的理念。

相似文献

2
The effects of common footwear on stance-phase mechanical properties of the prosthetic foot-shoe system.
Prosthet Orthot Int. 2018 Apr;42(2):198-207. doi: 10.1177/0309364617706749. Epub 2017 May 9.
3
Literature Review on Needs of Upper Limb Prosthesis Users.
Front Neurosci. 2016 May 12;10:209. doi: 10.3389/fnins.2016.00209. eCollection 2016.
6
Enhanced Neurobehavioral Outcomes of Action Observation Prosthesis Training.
Neurorehabil Neural Repair. 2016 Jul;30(6):573-82. doi: 10.1177/1545968315606992. Epub 2015 Oct 5.
7
Does Decreasing Below-Knee Prosthesis Pylon Longitudinal Stiffness Increase Prosthetic Limb Collision and Push-Off Work During Gait?
J Appl Biomech. 2019 Oct 1;35(5):312–319. doi: 10.1123/jab.2019-0043. Epub 2019 May 29.
8
Rehabilitation evaluation of the newly developed polymeric based passive polycentric knee joint.
Disabil Rehabil Assist Technol. 2020 Nov;15(8):871-877. doi: 10.1080/17483107.2019.1621955. Epub 2019 Jun 7.
9
Influence of Perspective of Action Observation Training on Residual Limb Control in Naïve Prosthesis Usage.
J Mot Behav. 2016 Sep-Oct;48(5):446-54. doi: 10.1080/00222895.2015.1134432. Epub 2016 Jun 2.
10
Biomechanical performance design of joint prosthesis for medical rehabilitation via generative structure optimization.
Comput Methods Biomech Biomed Engin. 2020 Nov;23(15):1163-1179. doi: 10.1080/10255842.2020.1789970. Epub 2020 Jul 14.

引用本文的文献

1
A Narrative Review of Prosthesis Design Decision Making After Lower-Limb Amputation for Developing Shared Decision-Making Resources.
Curr Phys Med Rehabil Rep. 2024 Mar;12(1):26-38. doi: 10.1007/s40141-024-00432-y. Epub 2024 Feb 13.
5
Effects of women's footwear on the mechanical function of heel-height accommodating prosthetic feet.
PLoS One. 2022 Jan 24;17(1):e0262910. doi: 10.1371/journal.pone.0262910. eCollection 2022.
6
Focusing research efforts on the unique needs of women prosthesis users.
J Prosthet Orthot. 2021 Jan 8;Online first. doi: 10.1097/JPO.0000000000000353.
7
Analysis of Continuously Varying Kinematics for Prosthetic Leg Control Applications.
IEEE Trans Neural Syst Rehabil Eng. 2021;29:262-272. doi: 10.1109/TNSRE.2020.3045003. Epub 2021 Mar 1.
8
Predicting Individualized Joint Kinematics over a Continuous Range of Slopes and Speeds.
Proc IEEE RAS EMBS Int Conf Biomed Robot Biomechatron. 2020 Nov-Dec;2020:666-672. doi: 10.1109/biorob49111.2020.9224413. Epub 2020 Oct 15.
10
Deleterious Musculoskeletal Conditions Secondary to Lower Limb Loss: Considerations for Prosthesis-Related Factors.
Adv Wound Care (New Rochelle). 2021 Dec;10(12):671-684. doi: 10.1089/wound.2019.1079. Epub 2020 May 22.

本文引用的文献

1
The effects of common footwear on stance-phase mechanical properties of the prosthetic foot-shoe system.
Prosthet Orthot Int. 2018 Apr;42(2):198-207. doi: 10.1177/0309364617706749. Epub 2017 May 9.
2
Finite element analysis of the amputated lower limb: A systematic review and recommendations.
Med Eng Phys. 2017 May;43:1-18. doi: 10.1016/j.medengphy.2017.02.008. Epub 2017 Mar 9.
3
The effects of prosthetic ankle stiffness on stability of gait in people with transtibial amputation.
J Rehabil Res Dev. 2016;53(6):839-852. doi: 10.1682/JRRD.2015.08.0148.
4
Impact testing of the residual limb: System response to changes in prosthetic stiffness.
J Rehabil Res Dev. 2016;53(3):369-78. doi: 10.1682/JRRD.2014.10.0234.
5
Controlling Knee Swing Initiation and Ankle Plantarflexion With an Active Prosthesis on Level and Inclined Surfaces at Variable Walking Speeds.
IEEE J Transl Eng Health Med. 2014 Jul 25;2:2100412. doi: 10.1109/JTEHM.2014.2343228. eCollection 2014.
6
Shock absorption during transtibial amputee gait: Does longitudinal prosthetic stiffness play a role?
Prosthet Orthot Int. 2017 Apr;41(2):178-185. doi: 10.1177/0309364616640945. Epub 2016 Jul 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验