Engmann Sebastian, Ro Hyun Wook, Herzing Andrew A, DeLongchamp Dean M, Snyder Chad R, Richter Lee J, Barito Adam, Gundlach David J
Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899.
Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899.
J Mater Chem A Mater. 2017;5(15):6893-6904. doi: 10.1039/C7TA00635G. Epub 2017 Mar 22.
To realize the full promise of solution deposited photovoltaic devices requires processes compatible with high-speed manufacturing. We report the performance and morphology of blade-coated bulk heterojunction devices based on the small molecule donor p-DTS(FBTTh) when treated with a post-deposition solvent vapor annealing (SVA) process. SVA with tetrahydrofuran improves the device performance of blade-coated films more than solvent additive processing (SA) with 1,8-diiodooctane. In spin-coating, SA and SVA achieve similar device performance. Our optimized, blade coated, SVA devices achieve power conversion efficiencies over 8 % and maintain high efficiencies in films up to ≈ 250 nm thickness, providing valuable resilience to small process variations in high-speed manufacturing. Using impedance spectroscopy, we show that this advantageous behavior originates from highly suppressed bimolecular recombination in the SVA-treated films. Electron microscopy and grazing-incidence X-ray scattering experiments show that SA and SVA both produce highly crystalline donor domains, but SVA films have a radically smaller domain size compared to SA films. We attribute the different behavior to variations in initial nucleation density and relative ability of SVA and SA to control subsequent crystal growth.
要实现溶液旋涂光伏器件的全部潜力,需要与高速制造兼容的工艺。我们报告了基于小分子供体p-DTS(FBTTh)的刮刀涂布体异质结器件在经过沉积后溶剂气相退火(SVA)工艺处理后的性能和形态。用四氢呋喃进行SVA比用1,8-二碘辛烷进行溶剂添加剂处理(SA)更能提高刮刀涂布薄膜的器件性能。在旋涂中,SA和SVA实现了相似的器件性能。我们优化的刮刀涂布SVA器件实现了超过8%的功率转换效率,并且在厚度达≈250nm的薄膜中保持了高效率,为高速制造中的小工艺变化提供了宝贵的弹性。通过阻抗谱,我们表明这种有利行为源于SVA处理的薄膜中高度抑制的双分子复合。电子显微镜和掠入射X射线散射实验表明,SA和SVA都产生了高度结晶的供体域,但与SA薄膜相比,SVA薄膜的域尺寸要小得多。我们将这种不同的行为归因于初始成核密度的变化以及SVA和SA控制后续晶体生长的相对能力。