化学高通量实验的发展,以解决制药合成中的挑战性问题。
The Evolution of Chemical High-Throughput Experimentation To Address Challenging Problems in Pharmaceutical Synthesis.
机构信息
Chemistry Capabilities and Screening, Merck Sharp & Dohme Corporation , Kenilworth, New Jersey 07033, United States.
Process Research & Development, Merck Sharp & Dohme Corporation , Rahway, New Jersey 07065, United States.
出版信息
Acc Chem Res. 2017 Dec 19;50(12):2976-2985. doi: 10.1021/acs.accounts.7b00428. Epub 2017 Nov 27.
The structural complexity of pharmaceuticals presents a significant challenge to modern catalysis. Many published methods that work well on simple substrates often fail when attempts are made to apply them to complex drug intermediates. The use of high-throughput experimentation (HTE) techniques offers a means to overcome this fundamental challenge by facilitating the rational exploration of large arrays of catalysts and reaction conditions in a time- and material-efficient manner. Initial forays into the use of HTE in our laboratories for solving chemistry problems centered around screening of chiral precious-metal catalysts for homogeneous asymmetric hydrogenation. The success of these early efforts in developing efficient catalytic steps for late-stage development programs motivated the desire to increase the scope of this approach to encompass other high-value catalytic chemistries. Doing so, however, required significant advances in reactor and workflow design and automation to enable the effective assembly and agitation of arrays of heterogeneous reaction mixtures and retention of volatile solvents under a wide range of temperatures. Associated innovations in high-throughput analytical chemistry techniques greatly increased the efficiency and reliability of these methods. These evolved HTE techniques have been utilized extensively to develop highly innovative catalysis solutions to the most challenging problems in large-scale pharmaceutical synthesis. Starting with Pd- and Cu-catalyzed cross-coupling chemistry, subsequent efforts expanded to other valuable modern synthetic transformations such as chiral phase-transfer catalysis, photoredox catalysis, and C-H functionalization. As our experience and confidence in HTE techniques matured, we envisioned their application beyond problems in process chemistry to address the needs of medicinal chemists. Here the problem of reaction generality is felt most acutely, and HTE approaches should prove broadly enabling. However, the quantities of both time and starting materials available for chemistry troubleshooting in this space generally are severely limited. Adapting to these needs led us to invest in smaller predefined arrays of transformation-specific screening "kits" and push the boundaries of miniaturization in chemistry screening, culminating in the development of "nanoscale" reaction screening carried out in 1536-well plates. Grappling with the problem of generality also inspired the exploration of cheminformatics-driven HTE approaches such as the Chemistry Informer Libraries. These next-generation HTE methods promise to empower chemists to run orders of magnitude more experiments and enable "big data" informatics approaches to reaction design and troubleshooting. With these advances, HTE is poised to revolutionize how chemists across both industry and academia discover new synthetic methods, develop them into tools of broad utility, and apply them to problems of practical significance.
药品的结构复杂性对现代催化提出了重大挑战。许多在简单底物上效果良好的已发表方法,在尝试应用于复杂药物中间体时往往会失败。高通量实验 (HTE) 技术的使用提供了一种方法,可以通过合理探索大量催化剂和反应条件来克服这一基本挑战,从而在时间和材料效率方面具有优势。我们实验室在解决化学问题方面最初尝试使用 HTE 的方法是筛选手性贵金属催化剂用于均相不对称氢化。这些早期努力在为后期开发计划开发高效催化步骤方面取得的成功,激发了我们希望扩大这种方法的范围,以涵盖其他高价值催化化学领域的愿望。然而,要做到这一点,需要在反应器和工作流程设计以及自动化方面取得重大进展,以有效地组装和搅拌大量的多相反应混合物,并在广泛的温度范围内保留挥发性溶剂。高通量分析化学技术的相关创新极大地提高了这些方法的效率和可靠性。这些经过改进的 HTE 技术已被广泛用于开发针对大规模制药合成中最具挑战性问题的极具创新性的催化解决方案。从 Pd 和 Cu 催化的交叉偶联化学开始,随后的努力扩展到其他有价值的现代合成转化,如手性相转移催化、光还原催化和 C-H 功能化。随着我们在 HTE 技术方面的经验和信心的成熟,我们设想将其应用于工艺化学之外的问题,以满足药物化学家的需求。在这里,反应通用性问题最为突出,HTE 方法应该具有广泛的适用性。然而,在这个领域中,用于解决化学问题的时间和起始材料的数量通常受到严重限制。为了适应这些需求,我们投资于更小的、特定于转化的筛选“套件”的预定义阵列,并推动化学筛选的小型化极限,最终开发出在 1536 孔板中进行的“纳米级”反应筛选。解决通用性问题的努力也激发了化学信息学驱动的 HTE 方法的探索,如 Chemistry Informer Libraries。这些新一代 HTE 方法有望使化学家能够进行数量级更高的实验,并使“大数据”信息学方法能够用于反应设计和故障排除。随着这些进展,HTE 有望彻底改变工业和学术界的化学家发现新合成方法的方式,将它们发展为具有广泛用途的工具,并将它们应用于具有实际意义的问题。