Chen Lung-Yi, Li Yi-Pei
Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan.
Taiwan International Graduate Program on Sustainable Chemical Science and Technology (TIGP-SCST), No. 128, Sec. 2, Academia Road, Taipei 11529, Taiwan.
Beilstein J Org Chem. 2024 Oct 4;20:2476-2492. doi: 10.3762/bjoc.20.212. eCollection 2024.
This review surveys the recent advances and challenges in predicting and optimizing reaction conditions using machine learning techniques. The paper emphasizes the importance of acquiring and processing large and diverse datasets of chemical reactions, and the use of both global and local models to guide the design of synthetic processes. Global models exploit the information from comprehensive databases to suggest general reaction conditions for new reactions, while local models fine-tune the specific parameters for a given reaction family to improve yield and selectivity. The paper also identifies the current limitations and opportunities in this field, such as the data quality and availability, and the integration of high-throughput experimentation. The paper demonstrates how the combination of chemical engineering, data science, and ML algorithms can enhance the efficiency and effectiveness of reaction conditions design, and enable novel discoveries in synthetic chemistry.
本综述探讨了使用机器学习技术预测和优化反应条件方面的最新进展与挑战。本文强调获取和处理大规模、多样化化学反应数据集的重要性,以及使用全局模型和局部模型来指导合成过程设计的重要性。全局模型利用综合数据库中的信息为新反应建议一般反应条件,而局部模型则针对给定反应家族微调特定参数以提高产率和选择性。本文还指出了该领域当前的局限性和机遇,如数据质量和可用性,以及高通量实验的整合。本文展示了化学工程、数据科学和机器学习算法的结合如何能够提高反应条件设计的效率和有效性,并在合成化学中实现新的发现。