Smith Emery, Giuliano Kenneth A, Shumate Justin, Baillargeon Pierre, McEwan Brigid, Cullen Matthew D, Miller John P, Drew Lawrence, Scampavia Louis, Spicer Timothy P
1 Department of Molecular Medicine, The Scripps Research Institute Molecular Screening Center , Scripps Florida, Jupiter, Florida.
2 Proteostasis Therapeutics, Inc. , Cambridge, Massachusetts.
Assay Drug Dev Technol. 2017 Dec;15(8):395-406. doi: 10.1089/adt.2017.810. Epub 2017 Nov 27.
Cystic fibrosis (CF), an inherited genetic disease, is caused by mutation of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene, which encodes an ion channel involved in hydration maintenance by anion homeostasis. Ninety percent of CF patients possess one or more copies of the F508del CFTR mutation. This mutation disrupts trafficking of the protein to the plasma membrane and diminishes function of mature CFTR. Identifying small molecule modulators of mutant CFTR activity or biosynthesis may yield new tools for discovering novel CF treatments. One strategy utilizes a 384-well, cell-based fluorescence-quenching assay, which requires extensive wash steps, but reports sensitive changes in fluorescence-quenching kinetic rates. In this study, we describe the methods of adapting the protocol to a homogeneous, miniaturized 1,536-well format and further optimization of this functional F508del CFTR assay. The assay utilizes a cystic fibrosis bronchial epithelial (CFBE41o) cell line, which was engineered to report CFTR-mediated intracellular flux of iodide by a halide-sensitive yellow fluorescence protein (YFP) reporter. We also describe the limitations of quench rate analysis and the subsequent incorporation of a novel, kinetic data analysis modality to quickly and efficiently find active CFTR modulators. This format yields a Z' value interval of 0.61 ± 0.05. As further evidence of high-throughput screen suitability, we subsequently completed a screening campaign of >645,000 compounds, identifying 2,811 initial hits. After completing secondary and tertiary follow-up assays, we identified 187 potential CFTR modulators, which EC's < 5 μM. Thus, the assay has integrated the advantages of a phenotypic screen with high-throughput scalability to discover new small-molecule CFTR modulators.
囊性纤维化(CF)是一种遗传性疾病,由囊性纤维化跨膜传导调节因子(CFTR)基因突变引起,该基因编码一种通过阴离子稳态参与维持水合作用的离子通道。90%的CF患者携带一个或多个F508del CFTR突变拷贝。这种突变会破坏蛋白质向质膜的转运,并降低成熟CFTR的功能。识别突变CFTR活性或生物合成的小分子调节剂可能会为发现新的CF治疗方法提供新工具。一种策略利用基于细胞的384孔荧光猝灭测定法,该方法需要大量洗涤步骤,但能报告荧光猝灭动力学速率的敏感变化。在本研究中,我们描述了将该方案调整为均相、小型化的1536孔格式的方法,以及对这种功能性F508del CFTR测定法的进一步优化。该测定法利用囊性纤维化支气管上皮(CFBE41o)细胞系,该细胞系经过工程改造,通过卤化物敏感的黄色荧光蛋白(YFP)报告基因报告CFTR介导的细胞内碘通量。我们还描述了猝灭速率分析的局限性,以及随后纳入一种新颖的动力学数据分析模式以快速有效地找到活性CFTR调节剂的情况。这种格式产生的Z'值区间为0.61±0.05。作为高通量筛选适用性的进一步证据,我们随后完成了对超过645,000种化合物的筛选,确定了2,811个初步命中物。在完成二级和三级后续测定后,我们确定了187种潜在的CFTR调节剂,其EC值<5μM。因此,该测定法整合了表型筛选的优势和高通量可扩展性,以发现新的小分子CFTR调节剂。