Smith Emery, Dukovski Danijela, Shumate Justin, Scampavia Louis, Miller John P, Spicer Timothy P
Department of Molecular Medicine, Scripps Florida, The Scripps Research Institute Molecular Screening Center, Jupiter, FL, USA.
Proteostasis Therapeutics, Inc., Boston, MA, USA.
SLAS Discov. 2021 Feb;26(2):205-215. doi: 10.1177/2472555220962001. Epub 2020 Oct 5.
Cystic fibrosis (CF) is caused by a mutation of the Cystic Fibrosis Transmembrane Conductance Regulator () gene, which disrupts an ion channel involved in hydration maintenance via anion homeostasis. Nearly 5% of CF patients possess one or more copies of the allele, which results in a stop codon at residue 542, preventing full-length CFTR protein synthesis. Identifying small-molecule modulators of mutant CFTR biosynthesis that affect the readthrough of this and other premature termination codons to synthesize a fully functional CFTR protein represents a novel target area of drug discovery. We describe the implementation and integration for large-scale screening of a homogeneous, 1536-well functional G542X-CFTR readthrough assay. The assay uses HEK 293 cells engineered to overexpress the G542X-CFTR mutant, whose functional activity is monitored with a membrane potential dye. Cells are co-incubated with a CFTR amplifier and CFTR corrector to maximize mRNA levels and trafficking of CFTR to the cell surface. Compounds that allow translational readthrough and synthesis of functional CFTR chloride channels are reflected by changes in membrane potential in response to cAMP stimulation with forskolin and CFTR channel potentiation with genistein. Assay statistics yielded Z' values of 0.69 ± 0.06. As further evidence of its suitability for high-throughput screening, we completed automated screening of approximately 666,000 compounds, identifying 7761 initial hits. Following secondary and tertiary assays, we identified 188 confirmed hit compounds with low and submicromolar potencies. Thus, this approach takes advantage of a phenotypic screen with high-throughput scalability to identify new small-molecule G542X-CFTR readthrough modulators.
囊性纤维化(CF)由囊性纤维化跨膜传导调节因子(CFTR)基因突变引起,该突变破坏了一个通过阴离子稳态参与维持水合作用的离子通道。近5%的CF患者拥有一个或多个ΔF508等位基因拷贝,这导致在第542位残基处出现一个终止密码子,阻止了全长CFTR蛋白的合成。鉴定影响该突变CFTR生物合成以及其他过早终止密码子通读以合成功能完全正常的CFTR蛋白的小分子调节剂,代表了药物发现的一个新靶点领域。我们描述了一种用于大规模筛选均一的1536孔功能性G542X-CFTR通读检测方法的实施和整合。该检测方法使用经工程改造过表达G542X-CFTR突变体的HEK 293细胞,其功能活性通过膜电位染料进行监测。细胞与CFTR增强剂和CFTR校正剂共同孵育,以最大化CFTR的mRNA水平并使其转运至细胞表面。能够实现翻译通读并合成功能性CFTR氯离子通道的化合物,可通过用福司可林刺激cAMP以及用金雀异黄素增强CFTR通道后膜电位的变化来体现。检测统计得出Z'值为0.69±0.06。作为其适用于高通量筛选的进一步证据,我们完成了对约666,000种化合物的自动筛选,确定了7761个初步命中物。经过二级和三级检测后,我们鉴定出188种具有低微摩尔和亚微摩尔效力的确认命中化合物。因此,这种方法利用了具有高通量可扩展性的表型筛选来鉴定新的小分子G542X-CFTR通读调节剂。