Suppr超能文献

真核生物代谢感知与信号传导的概念化

Conceptualizing Eukaryotic Metabolic Sensing and Signaling.

作者信息

Laxman Sunil

机构信息

Institute for Stem Cell Biology and Regenerative Medicine (inStem), NCBS Campus, GKVK, Bellary Road, Bangalore 560065, India.

出版信息

J Indian Inst Sci. 2017 Mar;97(1):59-77. doi: 10.1007/s41745-016-0013-1. Epub 2017 Mar 22.

Abstract

For almost all cells, nutrient availability, from glucose to amino acids, dictates their growth or developmental programs. This nutrient availability is closely coupled to the overall intracellular metabolic state of the cell. Therefore, cells have evolved diverse, robust and versatile modules to sense intracellular metabolic states, activate signaling outputs and regulate outcomes to these states. Yet, signaling and metabolism have been viewed as important but separate. This short review attempts to position aspects of intracellular signaling from a metabolic perspective, highlighting how conserved, core principles of metabolic sensing and signaling can emerge from an understanding of metabolic regulation. I briefly explain the nature of metabolic sensors, using the example of the AMP activated protein kinase (AMPK) as an "energy sensing" hub. Subsequently, I explore how specific central metabolites, particularly acetyl-CoA, but also -adenosyl methionine and SAICAR, can act as signaling molecules. I extensively illustrate the nature of a metabolic signaling hub using the specific example of the Target of Rapamycin Complex 1 (TORC1), and amino acid sensing. A highlight is the emergence of the lysosome/vacuole as a metabolic and signaling hub. Finally, the need to expand our understanding of the intracellular dynamics (in concentration and localization) of several metabolites, and their signaling hubs is emphasized.

摘要

对于几乎所有细胞而言,从葡萄糖到氨基酸的营养物质可用性决定了它们的生长或发育程序。这种营养物质可用性与细胞的整体细胞内代谢状态密切相关。因此,细胞进化出了多样、强大且通用的模块来感知细胞内代谢状态、激活信号输出并调节对这些状态的反应。然而,信号传导和代谢一直被视为重要但相互独立的过程。这篇简短的综述试图从代谢角度阐述细胞内信号传导的各个方面,强调如何通过理解代谢调节得出保守的代谢感应和信号传导核心原则。我以AMP激活的蛋白激酶(AMPK)作为“能量感应”枢纽为例,简要解释代谢传感器的本质。随后,我探讨特定的中心代谢物,特别是乙酰辅酶A,以及腺苷甲硫氨酸和SAICAR如何能够充当信号分子。我以雷帕霉素靶蛋白复合物1(TORC1)和氨基酸感应的具体例子详细阐述代谢信号枢纽的本质。一个亮点是溶酶体/液泡作为代谢和信号枢纽的出现。最后,强调了有必要扩展我们对几种代谢物及其信号枢纽在细胞内的动态变化(浓度和定位方面)的理解。

相似文献

1
Conceptualizing Eukaryotic Metabolic Sensing and Signaling.
J Indian Inst Sci. 2017 Mar;97(1):59-77. doi: 10.1007/s41745-016-0013-1. Epub 2017 Mar 22.
2
Snf1/AMPK fine-tunes TORC1 signaling in response to glucose starvation.
Elife. 2023 Feb 7;12:e84319. doi: 10.7554/eLife.84319.
3
Mechanism of Activation of Mechanistic Target of Rapamycin Complex 1 by Methionine.
Front Cell Dev Biol. 2020 Aug 11;8:715. doi: 10.3389/fcell.2020.00715. eCollection 2020.
4
Control of TSC2-Rheb signaling axis by arginine regulates mTORC1 activity.
Elife. 2016 Jan 7;5:e11058. doi: 10.7554/eLife.11058.
5
DNA-dependent protein kinase regulates lysosomal AMP-dependent protein kinase activation and autophagy.
Autophagy. 2020 Oct;16(10):1871-1888. doi: 10.1080/15548627.2019.1710430. Epub 2020 Jan 26.
6
The social network of target of rapamycin complex 1 in plants.
J Exp Bot. 2022 Nov 15;73(20):7026-7040. doi: 10.1093/jxb/erac278.
7
Nutrient sensors and their crosstalk.
Exp Mol Med. 2023 Jun;55(6):1076-1089. doi: 10.1038/s12276-023-01006-z. Epub 2023 Jun 1.
9
The lysosome: a crucial hub for AMPK and mTORC1 signalling.
Biochem J. 2017 Apr 13;474(9):1453-1466. doi: 10.1042/BCJ20160780.
10
An evolutionary mechanism to assimilate new nutrient sensors into the mTORC1 pathway.
bioRxiv. 2023 May 26:2023.05.25.541239. doi: 10.1101/2023.05.25.541239.

引用本文的文献

1
Metabolic transitions regulate global protein fatty acylation.
J Biol Chem. 2024 Jan;300(1):105563. doi: 10.1016/j.jbc.2023.105563. Epub 2023 Dec 13.
2
Some Metabolites Act as Second Messengers in Yeast Chronological Aging.
Int J Mol Sci. 2018 Mar 15;19(3):860. doi: 10.3390/ijms19030860.

本文引用的文献

1
Systems-level analysis of mechanisms regulating yeast metabolic flux.
Science. 2016 Oct 28;354(6311). doi: 10.1126/science.aaf2786. Epub 2016 Oct 27.
2
The lysosome as a command-and-control center for cellular metabolism.
J Cell Biol. 2016 Sep 12;214(6):653-64. doi: 10.1083/jcb.201607005.
3
Amino Acids Regulate mTORC1 by an Obligate Two-step Mechanism.
J Biol Chem. 2016 Oct 21;291(43):22414-22426. doi: 10.1074/jbc.M116.732511. Epub 2016 Sep 1.
4
The Lysosome as a Regulatory Hub.
Annu Rev Cell Dev Biol. 2016 Oct 6;32:223-253. doi: 10.1146/annurev-cellbio-111315-125125. Epub 2016 Aug 3.
5
Leucyl-tRNA Synthetase Activates Vps34 in Amino Acid-Sensing mTORC1 Signaling.
Cell Rep. 2016 Aug 9;16(6):1510-1517. doi: 10.1016/j.celrep.2016.07.008. Epub 2016 Jul 28.
6
Conserved regulators of Rag GTPases orchestrate amino acid-dependent TORC1 signaling.
Cell Discov. 2016 Mar 8;2:15049. doi: 10.1038/celldisc.2015.49. eCollection 2016.
7
The CASTOR Proteins Are Arginine Sensors for the mTORC1 Pathway.
Cell. 2016 Mar 24;165(1):153-164. doi: 10.1016/j.cell.2016.02.035. Epub 2016 Mar 10.
8
Intermediates of Metabolism: From Bystanders to Signalling Molecules.
Trends Biochem Sci. 2016 May;41(5):460-471. doi: 10.1016/j.tibs.2016.02.003. Epub 2016 Feb 28.
9
mTORC1 induces purine synthesis through control of the mitochondrial tetrahydrofolate cycle.
Science. 2016 Feb 12;351(6274):728-733. doi: 10.1126/science.aad0489.
10
The Warburg Effect: How Does it Benefit Cancer Cells?
Trends Biochem Sci. 2016 Mar;41(3):211-218. doi: 10.1016/j.tibs.2015.12.001. Epub 2016 Jan 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验