Urrestarazu Jorge, Muranty Hélène, Denancé Caroline, Leforestier Diane, Ravon Elisa, Guyader Arnaud, Guisnel Rémi, Feugey Laurence, Aubourg Sébastien, Celton Jean-Marc, Daccord Nicolas, Dondini Luca, Gregori Roberto, Lateur Marc, Houben Patrick, Ordidge Matthew, Paprstein Frantisek, Sedlak Jiri, Nybom Hilde, Garkava-Gustavsson Larisa, Troggio Michela, Bianco Luca, Velasco Riccardo, Poncet Charles, Théron Anthony, Moriya Shigeki, Bink Marco C A M, Laurens François, Tartarini Stefano, Durel Charles-Eric
Institut de Recherche en Horticulture et Semences UMR 1345, INRA, SFR 4207 QUASAV, Beaucouzé, France.
Department of Agricultural Sciences, University of Bologna, Bologna, Italy.
Front Plant Sci. 2017 Nov 10;8:1923. doi: 10.3389/fpls.2017.01923. eCollection 2017.
Deciphering the genetic control of flowering and ripening periods in apple is essential for breeding cultivars adapted to their growing environments. We implemented a large Genome-Wide Association Study (GWAS) at the European level using an association panel of 1,168 different apple genotypes distributed over six locations and phenotyped for these phenological traits. The panel was genotyped at a high-density of SNPs using the Axiom®Apple 480 K SNP array. We ran GWAS with a multi-locus mixed model (MLMM), which handles the putatively confounding effect of significant SNPs elsewhere on the genome. Genomic regions were further investigated to reveal candidate genes responsible for the phenotypic variation. At the whole population level, GWAS retained two SNPs as cofactors on chromosome 9 for flowering period, and six for ripening period (four on chromosome 3, one on chromosome 10 and one on chromosome 16) which, together accounted for 8.9 and 17.2% of the phenotypic variance, respectively. For both traits, SNPs in weak linkage disequilibrium were detected nearby, thus suggesting the existence of allelic heterogeneity. The geographic origins and relationships of apple cultivars accounted for large parts of the phenotypic variation. Variation in genotypic frequency of the SNPs associated with the two traits was connected to the geographic origin of the genotypes (grouped as North+East, West and South Europe), and indicated differential selection in different growing environments. Genes encoding transcription factors containing either NAC or MADS domains were identified as major candidates within the small confidence intervals computed for the associated genomic regions. A strong microsynteny between apple and peach was revealed in all the four confidence interval regions. This study shows how association genetics can unravel the genetic control of important horticultural traits in apple, as well as reduce the confidence intervals of the associated regions identified by linkage mapping approaches. Our findings can be used for the improvement of apple through marker-assisted breeding strategies that take advantage of the accumulating additive effects of the identified SNPs.
解析苹果开花期和成熟期的遗传控制对于培育适应其生长环境的品种至关重要。我们在欧洲层面开展了一项大规模全基因组关联研究(GWAS),使用了一个由1168种不同苹果基因型组成的关联群体,这些基因型分布在六个地点,并对这些物候性状进行了表型分析。该群体使用Axiom®苹果480K SNP阵列进行了高密度SNP基因分型。我们使用多基因座混合模型(MLMM)进行GWAS分析,该模型可处理基因组其他位置显著SNP的潜在混杂效应。进一步研究基因组区域以揭示导致表型变异的候选基因。在整个群体水平上,GWAS保留了两个位于9号染色体上的SNP作为花期的辅助因子,以及六个位于成熟期的SNP(三个位于3号染色体上,一个位于10号染色体上,一个位于16号染色体上),它们分别占表型变异的8.9%和17.2%。对于这两个性状,在附近检测到处于弱连锁不平衡状态的SNP,这表明存在等位基因异质性。苹果品种的地理起源和关系占表型变异的很大一部分。与这两个性状相关的SNP基因型频率的变化与基因型的地理起源(分为北欧+东欧、西欧和南欧)相关,并表明在不同生长环境中存在差异选择。在为相关基因组区域计算的小置信区间内,编码含有NAC或MADS结构域转录因子的基因被确定为主要候选基因。在所有四个置信区间区域都揭示了苹果和桃之间的强烈微同源性。这项研究展示了关联遗传学如何揭示苹果重要园艺性状的遗传控制,以及缩小连锁图谱方法所确定的相关区域的置信区间。我们的研究结果可用于通过利用已鉴定SNP的累积加性效应的标记辅助育种策略来改良苹果。